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The X-ray source population of the Small Magellanic ge/x-ray hinaries (BeXRBs)
Cloud (SMC) offers a large sample of Be/X-ray binaries bue to high recent star formation and low metalicity, the SMC

Transient sources in the SMC

Supersoft X-ray Sources (SSSs)
In the outer parts of the SMGy5 SSSs are known, mainly from

(BeXRBs) and supersoft X-ray sources (SSSs). All are hosts a remarkably high population 690 known BeXRBs, ROSAT. The low foreground absorption {N< 6 x 102 cmr2)
at a close distance of 60 kpc, in a low metallicity envi- concentrated in the SMC bar. BeXRBs can e.g. be used to traceé  enables the study of these sources in the SMC. SSSs are ex-
ronment and have a low Galactic foreground absorptior the recent star formation histofy] or estimate SN kick veloc- plained by thermonuclear burning on the surface of an aogret
This is contrary to the Galaxy, where most sources ar ities|2]. These systems consist of a neutron star (NS), and an  hite dwarf. They are associated with cataclysmic variables,
’ : early type Be star, which ejects matter into a decretion aisc | t-outburst n lanetarv nebul nd svmbiotis. sfes
obscured by large amounts of absorbing gas and whe . . . NN, POSE-OUILUIST hovae, planetary hebulae and symulotis.
y 1arg 99 the equatorial plane. During periastron or due to disc inistab progenitors for Type la supernova, they are of high inte/@SS

uncertainties n distances cqmpllcate th.e determinatio yies, the NS can accrete matter, which causes an X-ray outburst. can show a transient or variable behaviour reaching luritiass
of luminosities, or to more distant galaxies, where spa = Type |- Accretion during periastron, of Ly = 10°5- erg 57\,

’[Ia..| confusion of |nd|V|du.aI X-ray sources becomes com- |, — 1(36-37 erg 57! for some days = constante.g. SMP SMC 223]

plicated and only the brightest X-ray sources can be de€ g Type II: Accretion during disc instabilities, a regular variability:e.g. SMC34]

tected. Both BeXRBs and SSSs can show high variabil 1y > 10%7 erg s! for some weeks m irregular variability-e.g. CAL 83 (in the LMCY5]
ity, reaching luminosities of0°" erg s'. The repeated = quiescentAccretion from stallar wind, s transiente.g. Nova LMC 19956]

coverage of the SMC during the eROSITA survey every Lx < 10%ergs™

six months enables to monitor the Be/X-ray binary pop-

ulation and to discover new systems already in moderaSapal=5y\V (017 X-rays
outbursts with luminositieg> 10*° erg s'!. The detec- -
tion of these systems in outburst can be used to triggELS=EEs | eROSITA

follow-up X-ray observations. Light curves of SSSs ca | . . | (1.0-2.0) keV
be measured and new systems might be discovered in t Ny St 2 SMP SMC 22
outer parts of the SMC. s - i
d)
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Light curves e
The long term evolution of some SMC BeXRBs was studied with * ¥y
XMM-Newton [7]. In the eROSITA survey, light curves for the & g S5 Kl -
complete BeXRB population can be analysed. This will allow to ! ‘ : .
discriminate between persistent and transient BeXRBs. XMM-Newton ¢ . e
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ofthe X-ray emission. T_ € |qgram a Qve gives the light corve 3800 2 :2 thg SMC W?rr,g NOAO/AURA/NSF. b) XMM-Newton background above and below.5 x 10~* cts s™* arcsec? was
SMC3[4] as observed since discovery in the ROSAT all sky survey. 4375 s each 6 months

subtracted mosaic image from the SMC survey [8].smoothed to 2%and 150, respectively. From the
The image has an average exposure of 10-30 k¥kMM-Newton SMC point source catalogue [9],
and reveals~3000 X-ray sources. c) eRosita ex- we expect100 source in the SMC main field with

eROSITA fluxes are estimated from a sine function and a random
flux variation of 10%. The simulated data points are sepdriaye SMC main field
® N

months, starting at 2014 January 1. — 0OSUrE Map (for a sun-pointing scanning axis). > 6.5 x 107" ergecm—? s
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Spectral capability Prospects with eROSITA
m Monitor the BeXRB populatioof a complete galaxy.
The symbiotic nova SMC3 The Be/X-ray binary SXP6.85 m Light curves of SSSean provide important clues to the
i S—————— | ! ] L. 7 Simulation of two X-ray spectra as physics of the individual systems.
: - - : . m_,y “ wubtihadde | | observed with XMM-Newton for one m Discover new BeXRBsEach year~3 new BeXRBs
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KT = (34.2 0.6) eV i | [=0.388¢ 0.036 | during bright states. The SMC3 spec- covered by modern X-ray observatories.
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SSSs feasible.




