

The curious case of NGC4342, an optically faint but gas rich early-type galaxy

Á. Bogdán¹*, W. Forman¹, R. Kraft¹, C. Jones¹, C. Mihos², I. Zhuravleva³, Q. Guo⁴, E. Churazov³, A. Vikhlinin¹, P. Nulsen¹, Z. Li¹, H. Böhringer⁵, S. Schindler⁶ ¹SAO ²CWRU ³MPA ⁴NAOC ⁵MPE ⁶UIBK

- Optically faint early-type galaxy (E7, RSA; S0, RC3): M~10¹⁰ M⊙
- Remarkably bright X-ray corona originating from 0.5 keV gas: $L_x \sim 10^{40}$ erg/s
- Sharp surface brightness edge to NE indicates high velocity: M~2 • cz = 751 km/s ("near" Virgo cluster; M87 cz = 1307 km/s)
- 5.25 degrees (1.5 Mpc) from M87 • • 0.5 Mpc from NGC4472=M49 • 20' from "large" galaxy NGC4365 • In diffuse Virgo cluster emission?
- NGC4365 at 23 Mpc (7 Mpc "behind" Virgo;

- •Tidal tail extends (~200 kpc) SW of NGC4365 : m_B~28 mag/arcsec² (Mihos+11)
- Tidal interaction between NGC4365 and NGC4342 (130 kpc)?

• Unusually high L_x/L_k ratio in NGC4342 compared with other low mass early-type galaxies (Jones et al. 2011)

• Surprisingly massive black hole ($\sim 3 \times 10^8 \text{ M}_{\odot}$) relative to the low bulge mass (Cretton & van den Bosch 1999; Haring & Rix 2004)

- Galaxies, halos, black holes from millenium simulation (Guo+11)
- NGC4342 an outlier, a "rare" object
- More extreme than 99% of the population
- What is its evolutionary history?

Gas Physical Properties

 Northeast-Southwest orthwest-Southeast

Summary

•NGC4342 is very gas rich for its optical luminosity

• M_{BH}/M_{bulge} =0.026!! (typically ~0.002)

Why are the stars missing (or why is the black hole so massive)?

- Evolutionary scenarios for NGC4342
- 1) Stripping difficult dark matter also stripped with stars, deep optical image limits "missing" stars
- 2) Star formation suppressed: black hole grew faster than stars; violation of BHbulge co-evolution (e.g., Merloni+10)
- 400 600 Radius, arcsec Gas around NGC4365 • Extended NE-SW toward NGC4342 Is NGC4342 moving in a group centered on • Temperature jump at leading edge

 contact discontinuity/cold front 704 • ρ_{in} ~ 4 x 10⁻³ cm⁻³; ρ_{out} ~ (0.6-1.8) x 10⁻³ cm⁻³ • Gas mass $4x10^7 M_{\odot}$; gas replenishment time (~2 x $10^9 \text{ yrs})$ •Require some dark halo to gravitationally bind gas around NGC4342
 - NGC4342 moving through group gas centered on NGC4365?

•Map emission around NGC4365 to distance of NGC4342

References

Churazov et al., 2010, MNRAS, 404, 1165 Merloni et al. 2010, ApJ, 708, 137 Cretton & van den Bosch, 1999, ApJ, 514, Mihos et al., 2011, in prep.

Guo et al. 2011, MNRAS.413, 101 Haring & Rix, 2004, ApJ, 604, L89 Jones et al. 2011, in prep. Mei et al. 2007, ApJ, 655, 144

The authors thank Debora Sijacki and Mark Vogelsberger for helpful discussions.

*Einstein fellow

abogdan@cfa.harvard.edu