

Cooling tail method for X-ray bursting neutron star masses and radii determination

JNIVERSITY of OULU OULUN YLIOPISTO

V. Suleimanov^{1,2}, J. Poutanen³, M. Revnivtsev^{4,5}, and K. Werner¹

(1) Institut für Astronomie und Astrophysik, Tübingen University, Germany (2) Kazan Federal University, Russia, (3) University of Oulu, Finland, (4)Technische Universität München, Germany, (5) Space Research Institute, Moscow, Russia; e-mail: suleimanov@astro.uni-tuebingen.de

1 Method

Observed spectra of X-ray bursting NSs are fitted by blackbody spectra with two parameters: color temperature T_{BB} and normalization K = R²_{BB}[km]/D²₁₀.
Model spectra of X-ray bursting NSs are close to a diluted blackbody F_E = f⁻⁴_c B_E(f_cT_{eff}) with color correction factors f_c in the range 1.4 - 1.8 (Fig.1), therefore K is connected to the real NS radius via f_c and gravitational redshift z: K = (R(1 + z))²/(f²_cd₁₀)².

• At late stages of photospheric radius expantion bursts (when the photosphere radius is equal to the neutron star radius) K depends on f_c only.

• We suggest to fit observed dependences $K^{-1/4} - F$ by theoretical dependences $f_{\rm c} - L/L_{\rm Edd}$ (Fig.2), where F is the observed bolometric flux.

• Three parameters can be obtained from the fits: $A = (R(1 + z)[\text{km}]/D_{10})^{-1/2}$, $F_{\text{Edd}} = GMc/(0.2(1 + X)(1 + z)D^2)$, where X is a hydrogen mass fraction, and $T_{\text{Edd},\infty} = 1.14 \times 10^8 A F_{\text{Edd},-7}^{1/4}$ K, where $F_{\text{Edd},-7} = F_{\text{Edd}}/10^{-7}$ erg cm⁻² s⁻¹.

• A curve on the M - R plane corresponds to each obtained parameter (Fig.3). Crossing points give the possibly solutions for M and R.

Figure 1: Color-correction factor as a function of the NS luminosity for different chemical compositions (see Suleimanov et al. 2011a). The surface gravity is taken to be $g = 10^{14.0}$ cm s⁻². The dashed curve shows the results for a hydrogen atmosphere at larger gravity of $\log g = 14.3$.

Figure 2: Illustration of the suggested new cooling tail method.

Figure 3: Constraints on M and R from various observed values. If the assumed distance is too large, there are no solutions (the corresponding curves for $F_{\rm Edd}$ =const and R_{∞} =const shown by thin lines do not cross).

2 Application to a long burst of 4U 1724–307, a LMXB in the globular cluster Terzan 2

• RXTE has observed three photospheric radius expanshion bursts (Fig.4), one long and two short.

• Differences in the observed properties can be explained by different accretion disk states (Fig.5).

• The dependence $K^{-1/4} - F$ observed in a long burst can be fitted by the theoretical $f_c - L/L_{Edd}$ dependences (Fig.6).

Figure 4: Evolution of the observed blackbody fluxes, color temperatures and normalizations for a long (black circles) and short bursts from 4U 1724–307.

Figure 5: Different spectral states of the 4U 1724–307 accretion disk before a short and a long burst.

Figure 6: Comparison of the X-ray burst data for 4U 1724–307 to theoretical models of the NS atmosphere. The crosses represent the observed dependence of $K^{-1/4}$ vs. F for the long burst, while diamonds represent the two short bursts.

Figure 7: Constraints on the mass and radius of the NS in 4U 1724–307 from the long burst spectra. These correspond to the three chemical compositions: green for pure hydrogen, blue for the solar ratio of H/He and subsolar metal abundance $Z = 0.3Z_{\odot}$ appropriate for Terzan 2, and red for pure helium.

3 Conclusions

• The neutron star radius in 4U 1724–307 is larger than 14 km for masses below 2.3 solar mass (Fig.7).

• Most probably, the inner core of the neutron star is characterized by a stiff equation of state.

Details see in papers:

- V. Suleimanov, J. Poutanen, K. Werner, A&A, 527, A139, 2011a;
- V. Suleimanov, J. Poutanen, M. Revnivtsev, K. Werner, ApJ (in press), 2011b (arXiv:1004.4871).

Acknowledgements The work is supported by the DFG grant SFB / Transregio 7 "Gravitational Wave Astronomy" (V.S.), the Academy of Finland (grant 127512, J.P.), and DFG cluster of excellence "Origin and Structure of the Universe" (M.R.).