Observational signatures of turbulence in ICM

How to measure it?

I. Zhuravleva, E. Churazov, R. Sunyaev, N. Werner, S. Sazonov, J. de Plaa, A. Kravtsov, W. Forman, K. Dolag, R. Smith

First eROSITA International Conference, Garmisch 2011

Background picture: Vazza+11

ICM turbulence: direct measurements

RGS/XMM weak upper limits (Sanders+10)

ICM turbulence: indirect measurements resonant scattering (RS)

optical depth in resonant lines can be ~ 1 (Gilfanov+87)

See review Churazov, IZ+10

Werner, IZ+09

RS: NGC 5044 and NGC 5813

NGC 5044 Model Fe XVII ratios

NGC 5813 Model Fe XVII ratios

NGC 5044: 300 (RS) < V < 950 (width) km/s NGC 5813: 100 (RS) < V < 670 (width) km/s

Crucial point: uncertainties in atomic data

RS is mostly sensitive to: • radial motions • small scale motions

IZ+11a

Observed σ and structure function $SF(\Delta r) = \langle [V(r) - V(r + \Delta r)]^2 \rangle$

At a given projected distance R an interval 1 I_{eff} ~ R contributes to the line flux (and width)

Observed o(R) * structure function (I_{eff}) IZ+11b, submitted

RMS(V) and correlation length

 $RMS(V)/\sigma$ — proxy of correlation length IZ+11b, submitted

Conclusions How to constrain properties of the ICM velocity field? NOW

•Grating + RS \rightarrow lower limits on amplitudes •Grating + line width \rightarrow upper limits on amplitudes **SOON**

•eROSITA + RS \rightarrow constraints from CCD

 Astro-H + line width and centroid shift+ RS → amplitudes, anisotropy, spatial scales, 3D velocity power spectrum FUTURE

 ATHENA+ line width and centroid shift+ RS → amplitudes, anisotropy, spatial scales, 3D velocity power spectrum
 X-ray polarimeters → transverse gas motions

RS: polarization in strong lines Scattering phase function= Rayleight + Isotropic No polarization Polarization

Non zero weight of Rayleight weight (Chandrasekhar 1950, Hamilton 1947) He-like ions: $1s^2(^{1}S_{0}) - 1s2p(^{1}P_{1}) = W_{R} = 1$ (e.g. 6.7 keV line)

RS: polarization in strong lines Rayleight phase function + quadrupole moment = polarization

simulated cluster

Polarization: transverse motions

P ~ 15%

Zhuravleva et al. 2010a

RS: optical depths

Ion	$E, \ \mathrm{keV}$	f	τ , NGC 4636	τ , Virgo/M87	τ , Perseus
O VIII	0.65	0.28	1.2	0.34	0.19
Fe XVII	0.83	2.73	8.8	0.0005	$2.8 \cdot 10^{-8}$
Fe XVIII	0.87	0.57	1.3	0.0007	$1.5 \cdot 10^{-7}$
Fe XXIII	1.129	0.43	0.016	1.03	0.16
Fe XXIV	1.168	0.245	0.002	1.12	0.73
Fe XXV	6.7	0.78	0.0002	1.44	2.77

Sensitive to velocity of gas motions RS can be used as a diagnostic of turbulence in the ICM

Direct/Indirect measurements

	XMM-Newton	Chandra	Astro-H (2014)
Width and shift of lines	Weak upper limits on amplitudes (Sanders+11)	-	Amplitudes, <mark>spatial scales</mark> (Zhuravleva+11b)
Resonant Scattering	Upper limits on a (e.g. Werner+09, Cl talk by Jelle c	implitude hurazov+04) de Plaa	Amplitudes, <mark>spatial scales</mark> , anisotropy (Zhuravleva+11a)
Pressure fluctuations	Spatial scales (Schuecker+04)	-	-
SB fluctuations	Spatial scales talk by E. Churazov		_
Diffusion of heavy elements	Amplitudes, spat Rebusco+(rial scales 06	-

+ X-ray polarization: transverse gas motions (Zhuravleva+10)
+ Kinetic SZ: amplitudes

Resonant Scattering: spatial scales and anisotropy

Perseus, r<10 kpc</th>Perseus, r<30 kpc</th>Isotropic:V=500 km/sIsotropic:V=500 km/sRadial:V=200 km/sRadial:V=300 km/sTangential:V=1500 km/sTangential:V=1200 km/s

Zhuravleva+11a

Velocity field in SPH simulations: main problems

Numerical viscousity

Simulations by Dolag et al. 2005

3D velocity power spectrum

Deviations from Kolmogorov PS Dependence on considered volume SPH and AMR show similar behaviour

Gas motions: observations Broadening and shift of line: amplitude, dispersion RGS XMM Newton : upper limits on V (Sanders et al. 2010)

3D velocity power spectrum: resolution of simulations

