Searches for AGN at z>5 from X-ray to radio Steve Warren Imperial College London

Motivation

- Finding bright sources as beacons to study reionisation
- Following the history of black-hole accretion activity
 - Black hole mass function
 - Relation between black hole growth and star formation
 - Contribution to reionisation

z=7.085 quasar Mortlock et al, 2011

Treister et al. 2011 Detection of obscured z>6 AGN from X-ray stacking analysis of photo-z redshifts

- Substantial black-hole growth at z>6 in star-forming galaxies
- Most high-z black-hole growth is obscured
- But see counterclaims by Fiore et al (2011), Barger et al (2011)

Searches for AGN at z>5

 Current status and next few years at X ray Mid-ir

Radio (radio quasars, radio galaxies)

- 2. Current status in the optical / near-ir Reionisation Decline in space density
- 3. Prospects with Euclid

X rays: current status

Motivation

• A census of SMBH accretion activity, including obscured AGN

• Results

- z=5.19 (Barger et al 2002)
- z=5.40 (Steffen et al 2004)
- z=6.19 candidate CDF-S

X rays: current status

X rays: the near future

Predictions using the hard X-ray luminosity function of Aird et al. (2010)

X rays: the near future

X rays: the near future

eROSITA all-sky survey could find a number of z>6 AGN, but

- numbers uncertain
- very substantial follow-up required

Mid-ir: current status

- Motivation
 - Avoiding selection biases
- Results
 - z=5.39, 5.53, 5.85 (Cool et al 2006)
 - z=6.12 (Stern et al 2007)

• Drawback z>6.4

- Near-ir data needed
- Brown dwarf contamination
- WISE too faint

Radio: current status

- Motivation
 - Targets for 21cm forest
- Results quasars
 - z=5.19 (McGreer et al 2009)
 - z=5.47 (Romani et al 2004)
 - Z=5.95 (Ziemann et al 2011)
 - z=6.12 (McGreer et al 2006)
- Results galaxies
 - z=5.19 (Van Breugel et al 1999)

Radio: the near future

- LOFAR wide survey (2012)
 - Radio quasars flat spectrum, Pan-STARRS blank
 - Radio galaxies PanSTARRS, WISE blank, very faint in K
 - Predicted numbers very uncertain
 - Very extensive follow-up needed

Current status in the optical / near-ir

- Over 50 quasars z>5.8 so far discovered
- First z>6.5 quasar discovered by UKIDSS z=7.08 (Mortlock et al. 2011)
- Two further z>6.5 quasars discovered by VISTA z=6.8, 6.8 (Venemans et al. in prep.)
- First z>5.7 quasar discovered by PanSTARRs (Morganson et al. 2011)

From SDSS at z=6.2: $f_{HI}=10^{-3}$

From WMAP: z(reion)=10.5+/-1.2

z=6.5 is SDSS limit

Completeness calculation

7000		8000		9000		104
	z=7.08					Munnight
J1148+5251	z=6.42					
J1030+0524	z=6.28	·····		11		
J1623+3112	z=6.22		· · · · · · · · · · · · · · · · · · ·	Man		
J1048+4637	z=6.20				m	
J1250+3130	z=6.13		- Marine	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
J1602+4228	z=6.07		- mark	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
J1630+4012	z=6.05			w	᠃᠕᠕᠕᠂	
J1137+3549	z=6.01		M			
J0818+1722	z=6.00	hundra	por and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
J1306+0356	z=5.99			····		
J1335+3533	z=5.95		mapon	withoutsome	water all spectra and	
J1411+1217	z=5.93		m			
J0840+5624	z=5.85	marian	monte	Wildwarshow		
J0005-0006	z=5.85		M.	*****		
J1436+5007	z=5.83		Mannaha	www.	- And Walk	
J0836+0054	z=5.82	man	N	·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
J0002+2550	z=5.80	· · · · ·	man and a second		-man - man	
J0927+2001	z=5.79	mun	manyahaman	หปลุ มสาวา	marterberger	
J1044-0125	z=5.74	M	Munum	······	water	
7000	7500	8000	8500	9000	9500	

z=7.085 from MgII Mortlock et al, 2011 Nature

z=7.085 from MgII Mortlock et al, 2011 Nature

Transmission profile resembles damping wing of the IGM with neutral fraction f>0.1

Decline in space density z>6.4 from UKIDSS

For Willott et al (2010) LF at z=6, Y<19.88, 2200deg²

Fan et al (2001) decline extrapolated to z>6

5.8<z<6.4 predict 12.3 quasars, compared to 11 found

Decline in space density z>6.4 from UKIDSS

For Willott et al (2010) LF at z=6, Y<19.88, 2200deg²

Fan et al (2001) decline extrapolated to z>6

5.8<z<6.4 predict 12.3 quasars, compared to 11 found

Decline in space density z>6.4 from UKIDSS

6.4<z<7.2 predict 3.2 quasars compared to 1 found.

For predicted 3.2 quasars probability of detecting 0 or 1 is 16% i.e. no evidence for accelerating decline beyond z=6.4.

Predictions for future surveys z>6.4

Survey	Area	Depth Y (Vega)	Number	complete
UKIDSS	3800	19.6	6	2012
VIKING	1000	20.8	9	2015
PanSTARRS 10 sigma	20000	19.6	33	2015

Summary of UKIDSS results

- Probable detection of the red damping wing of the IGM in z=7.08 quasar: the first quasar in the epoch of reionisation. But note that reionisation is predicted to be very inhomogeneous
- Detection of 2x10⁹Msol BH at z=7.08: problem of formation
- Decline in space density of quasars 3<z<6 continues to z=7, with no strong evidence yet of acceleration

The scope of the Euclid surveys

- Wide survey 15,000 deg² YJH_{AB}=24 would take 680 years with VISTA or 66 years with SASIR (2017)
- Deep survey 40 deg² YJH_{AB}=26 would take 72 years with VISTA or 7 years with SASIR
- The Euclid surveys are >100 times more ambitious than anything underway and at least >10 times more ambitious than anything else currently conceived

Bright quasars z>8 J<22 from Euclid imaging

Euclid will find 30 z>8.1 quasars J<22 and 55 quasars J<22.5