

Prospects for eROSITA studies of nearby active stars and young stellar objects

INAF / Osservatorio Astronomico di Palermo

Spatial distribution of new T Tauri stars in Chamaeleon

eROSITA potential:

Complementary to Chandra/XMM studies of physics of stellar atmospheres and small-scale star formation

probing galactic stellar population:

 A) Structure of the galactic disk

 B) Young associations in the solar neighborhood

 C) Diskless pre-main sequence stars

Variability studies

 A) Flares
 B) Activity cycles

X-ray evolution with age

L_x drops by > 3 orders of mag from the pre-main sequence (few Myrs) to the main-sequence (Gyrs)

- →X-ray surveys are "biased" towards young stars
- \rightarrow L_x / age relation poorly constrained for old stars

Rotation-activity-age connection on the main-sequence

Expected X-ray/age relation:

 $v_{\rm rot} \sim t^{\alpha}$ $\alpha \sim -0.5$ (Skumanich et al. 1972)

A) comparison of observed and predicted galactic star counts

Problem:

Surveys either not deep enough (no old stars) or small area (few stars)

B) direct comparison of age/X-ray luminosity

Problem: Age of individual stars not known

Rotation-activity-age connection on the main-sequence

A) comparison of observed and predicted galactic star counts

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

sky area	$N_{\rm stars}$	$f_{ m x,lim}$	References				
[sq.deg]		[erg/s]					
778	215	$2 \cdot 10^{-13}$	Favata et al. (1992); Sciortino et al. (1995)				
9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)				
28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)				
0.12	11	$3 \cdot 10^{-17}$	Feigelson et al. (2004)				
2	100	$2 \cdot 10^{-15}$	Stelzer et al., in prep.				
0.9	60		Wright et al., 2010				
	sky area [sq.deg] 778 9 28 0.12 2 0.9	sky area Nstars [sq.deg] 778 215 9 152 28 58 0.12 11 11 2 100 0.9 60	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

The relevance of X-ray source counts (vs. optical)

- 1.) L_x decreases of 3 orders of magnitude during the main sequence
- \rightarrow young stars can be observed to much larger distance than old stars
- 2.) Galactic scale height depends on age
 - Young stars dominate shallow stellar X-ray samples old stars dominate deep high latitude stellar X-ray samples
 - → Galactic scale height depends on mass (stellar lifetime depends on mass)
 - → X-ray source counts depend on age/mass distribution (stellar birthrate can be inferred)

Predicting stellar source counts with a Galactic model

Number counts and survey characteristics

Age parametrization: $10^{7...8}$ yrs $10^{8...9}$ yrs $10^{9...10}$ yrswith scale heights:120 pc200 pc400 pcwith XLF:PleiadesHyadesfield stars

Number counts and survey characteristics

eROSITA stellar counts

Prediction for constant birthrate

eRASS ecliptic poles:

- beyond scale height for young and i.med.age
- overwhelmingly dominated by old stars

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

Survey Name	sky area	$N_{\rm stars}$	$f_{ m x,lim}$	References
	[sq.deg]		[erg/s]	
EMSS	778	215	$2 \cdot 10^{-13}$	Favata et al. (1992); Sciortino et al. (1995)
NEP	9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)
XBSS	28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)
CDFN	0.12	11	$3 \cdot 10^{-17}$	Feigelson et al. (2004)
XMM/COSMOS	2	100	$2 \cdot 10^{-15}$	Stelzer et al., in prep.
Chandra/COSMOS	0.9	60		Wright et al., 2010
EMSS: 70 EG sta	rs observer			
		'		E_]EMSS, MS stars only
24 predict	ted			EMSS, including PMS, RS CVn's, etc
\rightarrow "excess of y	ellow stars'	7		
				A ARS
Candidates				
A) Pop.II stars or	giants 🗡 I	ow spac	ce density	
B) RS CVn binarie	e <mark>s X</mark> at mos	st 25 ad	d. predicte	
but space d	ensity + sca	ale heig	ht uncertai	
C) Young active n	nain-seque	nce star	'S	·····································
	hundance		5	
✓ nigh Li a	bundance			
				-05 00 05 10 15 20 25

B - V

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

Survey Name	sky area	$N_{\rm stars}$	$f_{ m x,lim}$	References
	[sq.deg]		[erg/s]	
EMSS	778	215	$2 \cdot 10^{-13}$	Favata et al. (1992); Sciortino et al. (1995)
NEP	9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)
XBSS	28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)
CDFN	0.12	11	$3 \cdot 10^{-17}$	Feigelson et al. (2004)
XMM/COSMOS	2	100	$2 \cdot 10^{-15}$	Stelzer et al., in prep.
Chandra/COSMOS	0.9	60		Wright et al., 2010

ROSAT North Ecliptic Pole: (b ~ 30 deg; t <= 40ksec)

- mostly intermediate/old age dK/dM stars expected
- "yellow excess" persists, concentrated at young age

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

Survey Name	sky area	$N_{ m stars}$	$f_{ m x,lim}$	References
	[sq.deg]		[erg/s]	
EMSS	778	215	$2 \cdot 10^{-13}$	Favata et al. (1992); Sciortino et al. (1995)
NEP	9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)
XBSS	28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)
CDFN	0.12	11	$3 \cdot 10^{-17}$	Feigelson et al. (2004)
XMM/COSMOS	2	100	$2 \cdot 10^{-15}$	Stelzer et al., in prep.
Chandra/COSMOS	0.9	60		Wright et al., 2010
,				0 ,

Table 1: Characteristics of high galactic latitude X-ray surveys and their stellar content.

Survey Name	sky area	$N_{\rm stars}$	$f_{\rm x,lim}$	References
	[sq.deg]		[erg/s]	
EMSS	778	215	$2 \cdot 10^{-13}$	Favata et al. (1992) ; Sciortino et al. (1995)
NEP	9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)
XBSS	28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)
CDFN	0.12	11	$\frac{3 \cdot 10^{-17}}{2 \cdot 10^{-15}}$	Feigelson et al. (2004)
XMM/COSMOS	2	100	$2 \cdot 10^{-13}$	Stelzer et al., in prep.
Chandra/COSMOS	0.9	60		Wright et al., 2010
				handra Deen Field North:
°.				
100				
	Y	oung Stars	•	all young and intermed. mass stars detected
	Inter	mediate Stars Old Stars	•	sample dominated by old dM stars
^{100.}			5	
D) (qe				age parametrization:
10.0			ttions 15	Pleiades, Hyades, L _x ~ t ⁻¹²
			10 1	
우 -			Expec	
			— م	
			。	
	 g(S) [cnt/sec]	-2	7 < Log(Ag	ge) < 8 8 < Log(Age) < 9 Log(Age) > 9

Table 1:

Characteristics of high galactic latitude X-ray surveys and their stellar content.

Survey Name	sky area	$N_{\rm stars}$	$f_{ m x,lim}$	References
	[sq.deg]		[erg/s]	
EMSS	778	215	$2 \cdot 10^{-13}$	Favata et al. (1992); Sciortino et al. (1995)
NEP	9	152	10^{-14}	Micela et al. (2007); Affer et al. (2007)
XBSS	28	58	$7 \cdot 10^{-14}$	Lopez-Santiago et al. (2007)
CDFN	0.12	11	$3 \cdot 10^{-17}$	Feigelson et al. (2004)
XMM/COSMOS	2	100	$2 \cdot 10^{-15}$	Stelzer et al., in prep.
Chandra/COSMOS	0.9	60		Wright et al., 2010

Rotation-activity-age connection on the main-sequence

Expected X-ray/age relation:

$$v_{\rm rot} \sim t^{\alpha}$$
 $\alpha \sim -0.5$ (Skumanich et al. 1972)

 $L_{\rm x} \sim v_{\rm rot}^{\beta} \sim t^{\alpha\beta} \qquad \beta \sim 2 \text{ (Pallavicini et al. 1991)}$

 $\longrightarrow \quad L_{\rm x} \sim t^{-1}$

B) Direct comparison of age/X-ray luminosity

Ongoing Chandra + XMM-Newton program (PI Ribas):

"Calibrating the time-evolution of the high-energy emission of GKM stars"

...for GKM star companions to WDs ...concentrating on M-stars

<u>eROSITA with $f_x = 3 \ 10^{-14} \ erg/cm^2/s$ </u>:

Preibisch & Feigelson (2005)

- will cover the whole Gould Belt for the X-ray brightest stars
- will detect all K-type stars in nearby SFR (Taurus, Lupus, ...)

Guillout et al. (1998b)

The Gould Belt (a ring of bright stars tilted towards the Galactic plane) was detected in the RASS.

Magnitude limit Tycho: V = 10.5
→ SpT A5 @ 500pc
→ no P.M. available for eROSITA stars

need GAIA
with magnitude limit: V = 20 (SpT M)

<u>eROSITA with $f_x = 3 \ 10^{-14} \ erg/cm^2/s$ </u>:

- will cover the whole Gould Belt for the X-ray brightest stars
- will detect all K-type stars in nearby SFR (Taurus, Lupus, ...)

XMM-Newton Extended Survey in Taurus

19 x 30 ks XMM-Newton in Taurus Molecular cloud (+ 9 XMM-Newton fields in Taurus from archive)

PI Guedel

XMM-Newton Extended Survey in Taurus (XEST)

Relevance of X-rays for identification of YSOs

Large-scale star formation in Sco-Cen-Lup

Preibisch & Mamajek (2010)

In Usco detectable with eROSITA

Local star formation history (young, nearby stellar associations)

As	soc.	X [pc]	X Range [pc]	Y [pc]	Y Range [pc]	Z [pc]	Z Range [pc]	D [pc]	Age [Myr]
βF	Pic	20	-32/76	-5	-33/21	-15	-29/-1	31±21	10
Tue	c-Hor	3	-61/43	-24	-47/-4	-35	-44/-30	48±7	30
Co	l	-42	-106/9	-56	-168/1	-47	-99/6	82±30	30
Ca	r	14	-2/33	-94	-154/-39	-17	-33/5	85±35	30
ΤW	/ Hya	15	2/34	-44	-61/-26	21	10/27	48±13	8
ϵC	ha	50	34/60	-92	-105/-78	-28	-44/-12	108 ± 9	6
Oc	t	22	-79/142	-106	-138/-60	-68	-85/-38	141 ± 34	20?
Ar	gus	5	-55/64	-115	-154/-6	-18	-67/8	106 ± 51	40
AB	Dor	-6	-94/73	-14	-131/58	-20	-66/23	34±26	70

Space distribution, mean distances and ages of the nearby associations

Torres et al. (2008)

Table 2.

9 young comoving groups In the solar neighborhood

Song et al. (2003)

Backward integration of orbital motion For individual stars → Common origin

Controversial views of local star formation history

- A) All paths converge (Mamajek et al. 2000; Ortega et al 2009)
 ←→
- B) Young associations distant from Sco-Cen by 20-100pc at al time SF in UCL/LCC triggered by spiral arm shock;
 SF in YLAs triggered by LCC/UCL SN (Fernandez et al. 2008)

Search for associations containing young stars (SACY)

Cross-correlation for southern Tycho/Hipparcos catalog with ROSAT/BSC →Spectroscopic follow-up for ~ 2000 stars

X-ray variability as a tool to discover young stars ?

XMM-Newton slew: $\log L_x [erg/s] = 30.1$ 17 counts in ~10secRASS: $\log L_x [erg/s] < 29$ assuming $f_{lim} = 10^{-13} erg/cm^2/s$

Spectral Type K Photometric distance ~ 100 pc

XMM/TOO (13 Oct 2011) will reach log L_x [erg/s] = 27.5

Spectroscopic follow-up planned: Lithium, RV \rightarrow age, space motion

Preibisch & Feigelson (2005)

Identifying stars by their X-ray variability

Systematic study of X-ray variability in the RASS: among 30000 sources ~ 1200 variable of which ~ 750 stars

Flare science with eRASS:

- identifying stars
- statistics (counting events)
- flare physics (decay, temperature evolution) only for long flares

X-ray activity cycles on low-activity stars

<u>After 7 yrs of XMM monitoring:</u> X-ray cycle coincident with Ca II cycle; Amplitude of $L_x \sim 1 \text{ dex}$ HD81809 along high-activity extension of Sun; X-ray variability across the cycle due to variable coverage with cores of active regions (CO)

X-ray activity cycles on low-activity stars

HD81809 G2IV + G9IV (unresolved in X-rays) 8.2 yr periodic Ca II H+K cycle

(Favata et al. 2004, 2008):

<u>After 7 yrs of XMM monitoring:</u> X-ray cycle coincident with Ca II cycle; Amplitude of $L_x \sim 1 \text{ dex}$ eROSITA All-Sky Survey:

8 * 3 scans in 4 yrs with ~ 400 cts in each visit

Detecting X-ray activity cycles with eROSITA

Typical Ca II cycles: $P_{cyc} \sim 2.5 - 25$ yrs (Baliunas et al. 1995)

Few shorter cycles:

- Metcalfe et al. (2010) -- Ca II cycle ~ 1.6yr
- Garcia et al. (2010): -- oscillations measured with CoRoT \rightarrow 120d cycle (?)

Frequency changes over solar cycle

Potential for eRosita:

monitor stars with short (1-5 yrs) activity cycles

(many more may be revealed with CoRoT and Kepler)

long-term monitoring with 1 instrument avoids cross-calibration problems

Solar-stellar flare scaling laws

Examine peak flux in soft X-rays (GOES) and hard X-rays (RHESSI) for wide range of solar flares (C-, M-, X-Class events) (Isola et al. 2007):

RESULTS:

- power-law relation between soft + hard X-ray peak flux
- 60-80keV emission is non-thermal
- stellar soft/hard X-ray peak flux is extrapolation of Sun to higher fluxes

eROSITA potential:

Complementary to Chandra/XMM studies of physics of stellar atmospheres and small-scale star formation