4MOST: 4-meter Multi-Object Spectroscopic Telescope

A design study for an ESO spectroscopic follow-up facility for Gaia, eROSITA, Euclid and other all-sky surveys

Axel Schwope on behalf of Roelof de Jong (AIP)

Conceptual Design Study for ESO

- Now: start Conceptual Design study, completed by Feb 2013
- Goal: start all-sky spectroscopic survey early 2018
- Telescope: 4m-class telescope, either on VISTA or NTT
- Science: space mission follow-up: Gaia, eROSITA, Euclid
- Data: yearly public data releases with higher level data products
- Goal specs:

AIP

- Very high multiplex: >3000 fibers
- Full optical wavelength coverage: 390-1000 nm
- Large field-of-view: ∅=3°
- 4MOST provides in a 5 year survey
 - >20 ×10⁶ spectra @ R~7000 to m_V~20 mag at S/N=20
 - $> 1 \times 10^{6}$ spectra @ R~20,000 to m_V~16 mag at S/N=50

 2008: ASTRONET Infrastructure Roadmap

"A smaller project, but again of high priority, is a wide-field spectrograph for massive surveys with large optical telescopes."

 2008: ESA-ESO Working Group on Galactic populations, chemistry and dynamics

"Blue multiplexed spectrograph on 4 or 8m class telescope"

The ASTRONET Infrastructure Roadmap: A Strategic Plan for European Astronomy Executive Summary

- September 2010: Call for LoI for a Wide-Field Spectroscopic Survey Facility
 - Invitation to submit proposal
- March 1, 2011: proposal deadline
- May 2011: ESO selects two phase A studies
 - MOONS (IR MOS spectrograph for VLT)
 - 4MOST
- May 2012: VISTA/NTT decision
- Spring 2013: decision by ESO

Executive Summary

4MOST facility consortium

- Instrument Institutes
 - Leibniz-Institut f
 ür Astrophysik Potsdam (AIP) (D)
 - MPI für Extraterrestrische Physik, München (D)
 - Ludwig-Maximilian Universität, München (D)
 - Zentrum für Astronomie, Univ. of Heidelberg (D)
 - Institute of Astronomy, Cambridge University (UK)
 - Rutherford Appleton Laboratory, Oxford (UK)
 - L'Observatoire de Paris, GEPI, Paris (F)
 - NOVA, Dwingeloo (NL)
 - ESO, Garching (EU)
- Science Institutes
 - University of Lund (S)
 - University of Uppsala (S)
 - University of Groningen (NL)

AIP

One size fits all, all the time

4MOST can do many science cases at the same time

- Large Field-of-View of 3–7 □° enables all-hemisphere surveys
 - 20,000^{□°}/ 7^{□°} =~3000 pointings
 - 5 pointings/night x 300 nights/year = 2 years
- Large multiplex of >1500 (goal 3000) enables massive surveys, repeat observations
- 4MOST combine 3 spectral regimes in one facility
 - R~1000-2000 for redshift surveys of faint objects
 - R~5000 for radial velocities, [Fe/H], and [α /Fe]
 - R>20,000 for abundances
- Doing all at the same time, all the time creates opportunities otherwise not possible

Targeting object densities 1-100s / degree² all-sky, 1k – 10M samples

- Gaia follow-up:
 - Stellar radial velocities, parameters and abundances (15 < m_G < 20 mag)
 - Chemical tagging ($m_G < \sim 16 \text{ mag}$)
- eROSITA follow-up:
 - Cosmology with x-ray clusters of galaxies (z < ~0.6, r < 22.5 mag)
 - X-ray AGN/galaxy evolution to z~5
 - Galactic X-ray sources
- Euclid (and other imaging surveys) follow-up:
 - Dark Energy from BAO
 - Galaxy evolution

Gaia needs spectroscopic follow-up to achieve its full potential

4MOST extends the Gaia volume by 1000x in the red and 1 million in the blue!

The AGN-Galaxy connection as f(z)

- 4MOST will obtain R~3000 spectra for >1 million eROSITA AGNs:
 - z<1 BH accretion versus galaxy properties
 - 1<z<3 Feedback in action through outflow absorption lines of ~10⁴ AGNs
 - z>3 Search and characterization of the first accreting black holes (>10⁴ AGNs over a range of masses)
 - 0<z<5 The evolution of the SMBHgalaxy scaling relations
 - 0<z<3 AGN in dark matter halos: triggering and lifetime using 3D correlation functions

Large discovery space for Galactic X-ray sources

- Expect 0.5 million Galactic point source
- Constraining evolutionary channels (especially when combining 4MOST+eROSITA+Gaia)
 - coronal X-ray emitters
 - X-ray binaries of all sorts (CVs, XRBs, etc.)

Instrument Specification

AIP	Specification	Baseline	Goal	
	Field-of-View (FoV)	3 degree ²	>5 degree ²	
	Multiplex fiber positioner	1500	>3000	
	Spectrographs – blue arm			
	resolution @ 500 nm	R~5000	R~5000	
	passband	400-650 nm	390-650 nm	
	Spectrographs – red arm			
	resolution @ 850 nm	R~5000	R~7000	
	passband	650-900 nm	650-1000 nm	
	High resolution mode (10-20% of all fibers)	R>20,000, λ=393-459 & 585-676 nm	R>20,000, λ=393-459 & 585-676 nm	
	# of fibers in $\emptyset = 2$ ' circle	>3	>7	
	Reconfigure time	<8 min	<4 min	
	Area (5 year survey)	2x15,000 deg ²	>2x~20,000 deg ²	
	Objects (5 year survey)	6x10 ⁶	>20x10 ⁶	
	Start operations		end 2017	

• Mainly a policy decision by ESO

Telescopes pros and cons

	VISTA	NTT
Effective primary mirror diameter	3.7m (3.95m)	3.58m
Telescope site	Paranal ++	La Silla +
Modern survey telescope	++	+
Preliminary corrector FoV	⊘=3°	ø=2°
Rotator	+	-
Easy access focus	++	
Total costs to create large FoV	++	
Space for spectrographs	++	++
Community reluctance	- ?	+

Fiber Positioner concepts

Concept	Advantages	Disadvantages
Plug plates (e.g. SDSS)	High density, low complexity, low build cost, close target proximity, curved focal surfaces	Handling, olinne machinery requirements, labor intensive – high operations cost
Pick and place (e.g. 2dF)	Flexible, fair target proximity, relatively cheap	Single point failure mode, limit to multiplex, space for multiple field plates required
Locally sampling (e.g. LAMOST)	Scalable, robust, high density, uniform areal sampling, curved focal surfaces acceptable	Complexity, high cost, less flexibility assigning targets, hard feeding different spectral resolutions simultaneously

LAMOST-style positioner

두 🥖 🚍 📫

- Single configuration spectrographs, high throughput with VPH gratings
- Replicate R~5000 spectrographs to fiber count of positioner Dedicated R~20,000 spectrograph for ~10-20% fibers
- Minimize cross-talk between fibers as we have large dynamic range in science goals
 - If FoV >3 degree² we can repeat sky in different magnitude ranges
- Multiple designs currently being considered, building on earlier developments: WEAVE, WFMOS, GYES

|b| > 20

Magnitude range = 18.5 to 20.5 in i-band (< 22 in r-band)

For a 15000 deg² survey:

- 50000 galaxy clusters
- 50 galaxies/cluster = 2.5 Million galaxies
- Selection efficiency 50%
- Targeting overhead x2

→Total 2.5 Million spectra
→Challenge: strong clustering of target galaxies

Mock catalogues, obs strategy

- Exposure map + Galactic extinction map \rightarrow limiting flux F_{x,lim}@ E
- logNlogS → #/deg² (100 - 300)
- FoV → #sources (~1.3 Mio)
- $F_x/F_{opt} \rightarrow optical targets$ (~1.2 Mio)
- Completeness (90%)
- Depth (16-22.5 mag)
- Red sensitivity (400-1000nm)

AIP

Figure 12: Simulation of an obscured QSO spectrum using a preliminary 4MOST exposure time calculator. The input spectrum is based on an observed low-resolution spectrum of an X-ray selected obscured QSO at z = 2.8 with magnitude $m_{\rm R} = 23.2$ and line flux $f_{\rm HeII} = 1.5 \times 10^{-16}$ erg cm⁻² s⁻¹. The simulation includes photon and read-out noise based on a 4MOST exposure of 2 hours under realistic Paranal sky conditions.

ESO decision spring 2013

