"Multi-wavelength studies of microquasars and ULXs"

C. Motch With the help of M. Pakull & R. Soria

First eRosita International Conference, Garmisch-Partenkirchen 17-20 October 2011

What is an ULX ?

- ULXs defined as non-nuclear unresolved X-ray sources with isotropic Lx \ge 10 ³⁹ erg s⁻¹
 - higher than that of stellar mass Galactic black holes (peak Lx of ~ 10³⁹ erg s⁻¹)
 - higher than Eddington luminosity of a typical 10 M_☉ black hole
- In practice Lx = 10³⁹ -> few 10⁴⁰ erg s⁻¹ with a couple of outstanding cases...

How can we power an ULX ?

 Use a stellar mass BH (M ≤ 100 M☉) in super critical accretion regime and/or with beamed radiation:

$$L \approx \frac{1.3 \times 10^{38}}{b} \dot{m} \left(\frac{M}{M_{\odot}}\right) \text{ erg s}^{-1}, \qquad \dot{m} \lesssim 1$$
$$L \approx \frac{1.3 \times 10^{38}}{b} \left(1 + \frac{3}{5} \ln \dot{m}\right) \left(\frac{M}{M_{\odot}}\right) \text{ erg s}^{-1}, \quad 1 \lesssim \dot{m} \lesssim 100$$
$$\dot{m} = \dot{M} / \dot{M}_{\text{Edd}} \qquad b = \text{beaming factor (Poutanen+2007)}$$
Strong beaming unlikely (X-ray ionized nebulae)

 Use an intermediate mass BH (M ~ 10 ²⁻⁴ M⊙) in « normal » sub-Eddington regime

Why do we care ?

- Stellar mass BHs:
 - what make them different from Galactic BHs ?
 Evolutionary paths not seen in the Milky Way ?
 - laboratories to study accretion physics at near or super Eddington accretion rates.
- IMBHs:
 - constrain formation mechanism (extreme environment, low Z).
 - role in forming super-massive BHs in the early universe.

ULX X-ray spectra

- Phenomenology in two groups (Makishima 2007):
 - "Simple" power law energy distributions with a broad Γ distribution (1-3) peaking at $\Gamma \approx 1.8$ -2.0
 - "Complex" spectra showing a soft excess and a high energy break at E ≈ 5 keV
- Some ULXs display transitions between "simple" (low Lx) and "high energy break" spectra (high Lx) (e.g. Kubota +2001)
- A few show behaviours reminiscent of Galactic BHs

"Complex" spectra

- X-ray state not seen in Galactic BHs (Lx<L_{Edd})
- Identified as a new "Ultraluminous" state (Roberts 2007, Gladstone +2009)

(Roberts 2007)

Soft excess and disk emission

- L disk $\sim kT_{in}^{4}$ in standard Shakura & Sunyaev accretion disk
- L disk ~ kT_{in}^{-3.5} in some ULXs -> The observed disc radius is likely at boundary with an inner corona / outflow

High energy spectral break

(After Gladstone 2011)

Farrell+2011; Godet+2009

ULX X-ray spectra – a summary

- Evidence for strong Comptonization defining a new "Ultraluminous" X-ray state
 - static corona or dense wind created by super-critical accretion ?
 - Importance of reflection ?
- Favours near to or super Eddington accretion and ordinary (M < 20 M_☉) or massive (20 M_☉ < M < 100 M_☉) stellar mass black holes.
- However, some ULXs display typical BH hard/soft transitions (M82 X-1; HLX-1) indicating sub-Eddington regime and hence the likely presence of an IMBH.

Optical counterparts

- About 13 confirmed optical counterparts (e.g. Tao+2011):
 - faint m> 23 objects (but see below)
 - mostly blue stars, with colours consistent with those of early type stars
 - Mv suggesting giant stars
- Lx/Lopt typical of Low-Mass X-ray Binaries
 - Optical emission dominated by X-ray heating
- Usually strong and random optical variability

Optical spectra

- Blue continuum
- Hell in emission, broad and variable profile
- Balmer + other lines sometimes hard to disentangle from nebular emission
- No stellar absorption lines (but see below)
- No periodicity in Hell radial velocities (Roberts 2011)
- \Rightarrow No dynamical BH mass

Field crowding + nebulae makes observations challenging

Stellar environment

- ULX mostly located in nonelliptical galaxies
- Do not correlate with massive (M
 > 10⁵ M_☉) young star clusters (Swartz+2009)
- Often associated with relatively loose star clusters (or OB associations) with:
 - masses of a few 10³ M⊙ (too small to yield an IMBH)
 - ages in the range of 10 -20 Myr (Grisé+2008, 2011)

ULX P13 in NGC 7793

The optically brightest ULX counterpart (V ~20.5)

- Photospheric lines from the mass donor star are well detected
- Strong HeII + Bowen line complex in emission
- Lines + SED consistent with a B8I supergiant (Mv ~ -7, Lbol 5 10³⁸ erg s⁻¹, M ~ 20M^O)
- Lx ~ 4 10³⁹ erg s⁻¹
- Preliminary radial velocity curve suggests M_{BH} ~ 10 M⊙

(Motch+2011,2012)

X-ray spectrum of P13

- Lx \approx 3 L $_{edd}$ -> ULX P13 is a bona fide near or super Eddington accreting black hole
- Chandra spectrum best fitted by a simple Comptonized energy distribution with:
 - kTe \sim 2.3 keV and τ \sim 11
 - No need for a soft component
- Fitting high energy part only (E>2 keV) seems to require a broken power law with E_b ~ 4 keV

Consistent with an "Ultraluminous" state

ULX bubbles, jets & micro-quasars

Bubble diameter $\sim 26'' = 400 \text{ pc} (!)$

Optical spectra: shock ionised

Vs ~ 100 km/s

Pakull & Mirioni 2002, Pakull+2006

ULX bubbles, jets & micro-quasars

About 25% ULX blow observable bubbles.

The largest ones are most probably shock-ionized nebulae with E >~ 10^{52} erg, d >~ 100 pc and V_{exp} = 80 - 150 km/s (highly supersonic) Wind/jet driven bubble with power Lw (Weaver+1977)

R = 0.76 (L_w/
$$\rho$$
)^{1/5} t^{3/5}; t = 3/5 R/v
L_w = 5 10³⁹ erg/s R₁₀₀² × V₁₀₀³ × n ≈ Lx !

Fully radiative shock with v_s implies for total radiative luminosity & H β Luminosity

 $L_{rad} = 27/77 \times L_w; \qquad L_{H\beta} = f(v_s) \times L_w$

t~10⁶ yrs; Lw~10³⁹⁻⁴⁰ erg/s ~ Lx (ULX) ; E_o~10⁵³ erg/s

(Pakull & Mirioni 2002; Pakull & Grisé 2006)

S26: X-ray/ radio image

S26 in NGC 7793: a super-SS433/W50 micro-quasar

Largest and most powerful micro-quasar system (160 x 290 pc)

- Vexp ~ 250 km s⁻¹
- Linear size ~ 2.5 that of SS433/W50
- Jet power ~ a few 10⁴⁰ erg/s (>> Ledd of accr. BH.)
- Characteristic age ~ 2 x 10⁵ yrs
- Low persistent X-ray luminosity Lx = 7 10³⁶ ergs⁻¹
- Total energy E ~ 10⁵³ erg
 - most of it is thermal and kinetic energy
 - only ~ 1% goes into synchrotron-emitting electrons

First evidence of collimated jets at super Eddington rates ?

Prospects for eRosita

- Current ULX surveys are complete up to 15Mpc (northern sky only, Swartz +2011)
- eRosita all-sky ULX survey will be complete up to ≈ 10Mpc.
- eRosita somewhat hampered by spatial resolution (30" = 5kpc at 35Mpc), but excellent in finding the most luminous ULXs.
- Modelling by Prokopenko & Gilfanov (2009):

 $d_{max} = 35 \text{ Mpc}, Lx_{min} \sim 1 \times 10^{40} \text{ ergs}^{-1}$ About 85 high Lx ULXs will be found in the eRosita survey compared to

10 – 15 in Chandra (Swartz+2011) and 2XMM (Walton+2011) surveys.

- Is there a break at Lx = 2x10⁴⁰ erg s⁻¹? (corresponding to ~ Ledd of the most massive stellar BHs)
- Is there evidence of a more luminous and distinct (IMBH) ULX population ? (eg HLX-1; Lx ~10⁴² erg s⁻¹)

Conclusions

- "Complex" X-ray spectra indicate the presence of large warm Comptonizing regions (static coronae or massive winds), possibly related to super-Eddington accretion => likely "normal" or "massive" stellar mass black holes...
- Some ULXs display X-ray spectral states consistent with sub-critical accretion (e.g. HLX-1) and are good **IMBH** candidates.
- Bubbles show that ULXs may radiate as much mechanical energy as Lx and should thus produce strong massive winds (or jets).
- Some black holes (S26, SS433) seem able to radiate most of their energy in the jets (alternatively, we observe them in a low state or view them at high inclination) => introduce the concept of "Ultrapowerful sources" (UPSs) (Feng & Soria 2011).
- BH feedback also important in the near to or super Eddington regime.
- eRosita will likely discover several more Lx ≈ 10⁴¹⁻⁴² erg/s IMBH candidates and determine the shape of the high Lx ULX luminosity function.

Thank You