

eROSITA CCD Detectors

Time-Resolved Spectroscopy and Imaging of X-Rays

R. Andritschke, J. Elbs, S. Granato, O. Hälker,

G. Hartner, S. Herrmann, N. Meidinger, D. Mießner,D. Pietschner, J. Reiffers, T. Rommerskirchen,G. Schmaler, L. Strüder, G. Weidenspointner

Max-Planck-Institut für extraterrestrische Physik MPI Halbleiterlabor 17. October 2011

XMM-Newton

Introduction

EPIC PN

PNCCD developed by 'MPI Halbleiterlabor' → ESA's XMM-Newton mission (1999 – today)

ground-based applications:

- e.g. X-Ray Imaging Measurements at Free Electron Lasers (FLASH (D), LCLS (USA), SPRING 8 (J), EuXFEL (D))
- → enhanced XMM-Newton PNCCD developed for space project: eROSITA (extended Roentgen survey with an imaging telescope array)
- = 7 x telescope {X-ray mirror system + PNCCD camera}
 → FoV = 1.0°

E ~ [0.3 keV; 10 keV]
spectroscopy: theoretical limit
imaging: 147,456 pixel
time resolution: 50 ms
quantum efficiency QE_{eff}(CCD + optical filter))[800eV; 14keV] > 75%

eROSITA

2

PNCCD detector concept

- pn-junctions for transfer registers \rightarrow **PNCCD**
- back-illuminated \rightarrow high + uniform QE @ low energies
- fully depleted \rightarrow high QE @ high energies
- \bullet on-chip amplification + CAMEX ASIC \rightarrow low noise
- parallel architecture \rightarrow high speed readout
- frame store: minimization of OOT events

eROSITA PNCCD detector design

- back-illuminated frame-transfer-CCD
- chip thickness (= 450 µm) fully sensitive
- image: 384 · 384 pixels of 75 · 75 µm² size
- column-parallel: 384 independent channels

CAMEX:

- 128 analog signal processing channels
- low-noise (<1 e^- ENC), fast (> 5MHz), low-power (< 0.7W)
- fabrication: JFET-CMOS technology at FHI Duisburg

eROSITA PNCCD detector development

eROSITA CCDs developed + manufactured in MPI Halbleiterlabor

✓ CCD chips tested with **cold-chuck probe station** (full device operation including spectroscopy) \rightarrow 7 best CCDs for eROSITA

eROSITA CAMEX developed + manufactured + tested

eROSITA detector board:

flight-prototype board: developed + manufactured + tested

- thick film technology on AI_2O_3 substrate
- 5 layers
- mechanical+cooling interface
- flex interface to electronics

development of supply, control and DAQ electronics for detector system testing in lab

 $\square \Rightarrow$ detailed testing of PNCCD detector

Detector performance

- ♦ Frame rate: 20 images / s → 2.9 Mpixel/s
- P(OOT events) ≈ 0.2%
- Readout time: 10 ms / image
- CAMEX in standby after readout
- Power consumption: 0.7 W / detector in FP
- Operating temperature ≈ -94°C (rad. dam.!)
- → Read noise: 2.5 electrons rms ENC no bright pixel

eROSITA EM detector with front-end electronics tested at GEPARD / MPE (2010/2011)

Spectroscopy

eROSITA EM detector + FEE at GEPARD: ⁵⁵Fe spectrum FWHM(5.9keV) = 130 eV σ = 2.5 el. ENC CTI < 10⁻⁵

eROSITA CCD lab module at BESSY synchrotron: E= 280 eV spectrum FWHM(280eV) = 52 eV

Quantum Efficiency Measurement

Full peak quantum efficiency of eROSITA CCD with on-chip light filter measured at BESSY synchrotron in collab. with PTB

First eROSITA International Conference / eROSITA CCD detectors, 17.Oct.2011 / N. Meidinger, MPE

Uniformity of detector sensitivity

Normalized AI-K (1.5 keV) photon distribution over CCD area:

Instrument background

Minimization of instrumental background: graded-Z shield

Cu (proton shield) \rightarrow Al \rightarrow B₄C/Be

 \Rightarrow no fluorescence lines

Instrumental background simulation (SPENVIS + GEANT4 + CCD event analysis):

Radiation environment in space

L2 orbit, 7 years (2013 - 2020):

- primary proton spectrum (SPENVIS, JPL-91)
- proton interaction in detector shielding (Z-graded): 3 cm Cu + 1 mm Al + 1 mm B₄C (Monte Carlo simulations using GEANT4)
- Proton fluence + energy spectrum in charge transfer depth → lattice defects (A, E, V₂) relevant for CTI
- solar + cosmic protons: 1.0 E9 / cm² (CL=95%)
- proton energy spectrum: norm. to equiv. NIEL of 10MeV-protons in transfer depth solar + cosmic protons: 2.5 E8 / cm² (CL=95%)
- Irradiation test of eROSITA CCDs with protons at TANDEM accelerator (Maier-Leibnitz-Lab.)

Radiation damage results

eROSITA,7 y

CL≈95%

	Φ (#p/cm²)	0	0.51E8	1.0E8	1.5E8	1.9E8	2.3E8	3.3E8	4.0E8	5.6E8
T=-80°C	Read noise	2.26e⁻	2.28e⁻	2.31e⁻	2.28e⁻	2.24e⁻	2.30e⁻	2.29e⁻	2.25e⁻	2.26e⁻
	FWHM(277eV)	52eV	52eV	54eV	55eV	54eV	55eV	55eV	57eV	58eV
	FWHM(5.9keV)	148eV	151eV	162eV	169eV	178eV	181eV	189eV	215eV	236eV
T=-90°C	FWHM(277eV)	52eV	52eV	53eV	54eV	53eV	54eV	55eV	56eV	57eV
	FWHM(5.9keV)	148eV	150eV	158eV	161eV	166eV	168eV	170eV	186eV	197eV
T=-100°C	FWHM(277eV)	51 eV	52eV	53eV	55eV	54eV	56eV	56eV	60eV	64eV
	FWHM(5.9keV)	146eV	150eV	153eV	155eV	155eV	158eV	158eV	166eV	171eV
T=-110°C	FWHM(277eV)	51eV	53eV	55eV	57eV	57eV	61eV	65eV	70eV	74eV
	FWHM(5.9keV)	144eV	148eV	152eV	156eV	155eV	158eV	158eV	162eV	164eV

 $T \leq -80^{\circ}C$: No increase of read noise

- **T** = -90° **C**: Δ FWHM/FWHM $\leq 14\%$ @ 277eV, 5.9keV; CL=95%
- **T =-100°C:** ΔFWHM/FWHM ≤ 10% @ 277eV, 5.9keV; CL=95%

Necessary: CTI degradation in space precisely measured + corrected !

12

eROSITA pnCCD: radiation damage results

Spectra of irradiated CCD at T=-90°C

normalized to same number of counts

⁵⁵Fe spectrum (5.894 eV, 6.489 eV)

C-K spectra (277 eV)

Necessary: CTI degradation in space precisely measured + corrected !

Summary and Outlook

- eROSITA flight CCDs:
 - \rightarrow developed + manufactured
- ✓ eROSITA flight CAMEX:
 → developed + manufactured
- **Lab / EM CCD detector**:
 - → detector performance tested and verified read noise: 2.5 el. ENC spectroscopy at E < 0.5keV image smearing: P(OOT) = 0.2%
- ✓ Radiation hardness test: eROSITA after 7 y:
 → ΔFWHM(end of mission)/FWHM ≤ 14% @ T = -90°C
- X Next steps:
 - → Operation with complete EM flight electronics
 - → QM CCD detector (environmental tests)
 - → 7 FM CCD detector (calibration)

14