Near-Infrared – Submm Surveys: Clusters and AGN with the new WISE Allsky mid-IR Survey

Carol J Lonsdale North American ALMA Science Center NRAO

Image: the Fornax Cluster with WISE

Outline

- Quick overview of the major large area surveys
 - Near Infrared
 - Mid and Far Infrared
 - Submm/mm
- Synergies with X-ray surveys; focus on Spitzer and WISE
 - Clusters
 - AGN
- Prospects for eROSITA

Half the Energy in the Universe is in the IR

Harwit et al, 2008, Decade Review white paper

Near Infrared Surveys

NIR Imaging Surveys

NIR Redshift Surveys

EUCLID

- EUCLID: ESO Cosmic Vision 2015-2025 mission to determine the nature of dark energy and dark matter
 - 1.2m, visible imager & near-IR spectrometer and photometer
 - Launch to L2 on Soyuz from Kourou, 2018
 - Wide: 15,000 sq. deg.
 - Deep: 40 sq. deg.
 - Vis,Y,J,H: 0.55 2 microns

Euclid

Mapping the geometry of the dark Universe

Definition Study Report

WFIRST

- WFIRST: Candidate mission promoted by US 2010 Decade Review
 - Area: 13,700 sq. deg. (1 year), 23,250 sq. deg. (5 years)
 - Imager (0.6 2um) and
 2 slitless spectrometers
 (1.1 2um)
 - 1.3m telescope
 - Launch to L2 in 2020

Spitzer's Largest Surveys

SWIRE: 49 sq deg Lonsdale et al SERVS: 18 sq deg within SWIRE at 3.6 and 4.5 Lacy et al NOAO Deep Wide Field Survey in Bootes: 9 sq deg GTO teams

SWIRE, Spitzer Wide-area InfraRed Extragalactic Survey ELAIS-N1 LOCKMAN ELAIS-N2

IRAS 100µm map

XMM-LSS

Herschel 160µm Surveys

Submm/mm Surveys

Clusters in Spitzer & WISE

Red sequence method or photometric redshifts.

- [3.6]-[4.5] has strong dependence on z as the restframe ~1.6µm stellar peak shifts through the bands.
- Illustrated by Spitzer/SWIRE SED-fitting and photometric redshifts

SWIRE: Spitzer Wide field InfraRed Extragalactic survey, Lonsdale et al (2004)

SWIRE Clusters: SpARCS collaboration Wilson et al. Uses $[z'] - [3.6\mu m]$ color

Several hundred cluster candidates

Demarco et al. 2010

SWIRE Clusters: SpARCS

SWIRE Clusters: Papovich et al. 2010

SWIRE Clusters: Papovich

Many candidate clusters found across the 49sq deg SWIRE fields

Finding Clusters with WISE

Deimos observations of WISE galaxies

Lake et al, 2011

L* galaxies can be seen by WISE to z>1 at 3.4µm.

Several candidate clusters are being investigated by the WISE team

Finding Clusters with WISE

Deimos observations of WISE galaxies

Lake et al, 2011

Demonstration of color-redshift relation due to stellar peak shifting through the 3.4µm WISE band

WISE AGN

Translating Spitzer AGN color selection to the WISE bands

Optical, UV and soft Xray biases: obscuration

• MIR is powerful for obscured AGN identification

SWIRE SED-typing (left) and location in color-photo-z (right) ; Lonsdale et al

Spitzer AGN Identification

SWIRE SED-typing (left) and location in Lacy et al (2004) color-color plot (right) (z<1 galaxies removed), Lonsdale et al. AGN (• ×) lie in the red "AGN wedge" region

Allsky WISE AGN Samples

 WISE color-color AGN selection validated with Spitzer data

A New WISE-Radio AGN Sample

Full sky WISE database matched to NVSS 64,405 sources detected at 12 and/or 22µm

2343 "red" obscured AGN candidates

Kimball et al 2011 Lonsdale et al 2011

The Very Red WISE AGN Sample compared to Spitzer highly obscured QSOs

"torus"-like shape in mid-IR SED identifies z>1 obscured QSOs well

Polletta et al, 2007

Torus model (Honig et al 2006) fits to red Spitzer/ SWIRE QSOs

WISE Very Red Obscured QSO Candidate with "Torus"-like SED

 WISE images and NVSS contours. Upper limits in SED plot are 2MASS and SDSS

WISE Radio AGN Sample

The WISE-selected radio AGN sample (red points: power-law and torus SED shapes) is extremely red in WISE colors; ie. faint at 3.4µm compared to the full WISE-NVSS sample (contours)

WISE & eROSITA

Lockman SWIRE Deep-Wide Field: Wilkes et al 2009, Polletta et al 2006. X-ray compared to 3.6µm (left) and 24µm (right)

Summary

IR-submm surveys vary greatly in depth and coverage

- NIR surveys cover whole sky and will reach much deeper at 2µm over
 ~half the sky with the advent of EUCLID, and possibly WFIRST
- WISE presents 1-2 orders of magnitude increase in sensitivity in the MIR, whole sky
- Spitzer surveys total <100 sq deg. They are fundamentally important for informing the larger & shallower WISE survey
- Herschel/PACS surveys cover several 100 sq deg (H-ATLAS)
- In the submm Planck is all sky. Nested deeper & high resolution surveys reach over 100 sq deg with Herschel/SPIRE and over 1000 sq deg with the South Pole Telescope

Summary, cntd.

Spitzer results can be used to inform what we can expect from matching eROSITA with WISE

Galaxy Clusters

- WISE can see L* galaxies to z>1 with the two short wavelength bands (3.4 & 4.6µm)
- The [3.4]-[4.6] color alone can do surprisingly well at indicating clusters by the red sequence method. Full phot-z solutions are of course better
- WISE data are powerful for constraining cluster galaxy masses

AGN

- WISE will play a central role in discovering highly obscured AGN
- Spitzer has shown us that there is a wide dispersion for AGN in the observed MIR-Xray MIR plane
- Based on these small Spitzer MIR-Xray surveys we can expect >100,000 WISEeROSITA AGN