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» Signals from dark matter

» Limits on dark matter models from Fermi gamma-ray
observations of clusters

(first year and more recent results)

» Can we constrain dark matter with X-ray observations?

» Cosmic rays in clusters — limits from Fermi




> to Standard Model
particles potentially giving observables signatures.

» Dark matter annihilation/decay
can lead to a broad spectrum of
emission.
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Example spectrum of DM annihilation in the
Coma cluster (Colafrancesco et al. 2006)




Secondary gamma rays from w, decays
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Lepton pair production

( , hot typical for neutralino annihilation, but
popular as an explanation of the )
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Particle physics
factor

depends on DM density depends on pair annihilation
distribution in a given object cross-section, particle mass,
and final state




Search Technique
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Clusters of galaxies are:

» The most massive collapsed
objects and dark matter dominated

» |solated and many lie in regions
of low gamma-ray backgrounds
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Clusters are particularly powerful for constraining:

(Diffusion of e*e- not important, because the energy loss

timescale via IC scattering is much shorter than the
diffusion time)
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Local source
of primary e*e-
needed
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» Positron fraction increases with energy above 10 GeV

» Several potential explanations ( ),
including DM annihilation or decay
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» Fitting the e* excess as dark matter (without violating
other constraints) prefers a leptonic final state and a high
particle mass.







» Fermi-LAT does not detect clusters in gamma rays.

» Limits an order of magnitude deeper than EGRET.

Pinzke & Pfrommer 2010

[~77] Donnert et al. 2010

EGRET 0.95CL
LAT 0.95 CL

F > 0.1 GeV (ph cm-2s-)
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» Brightest predicted clusters/groups (Jeltema et al. 2009)

» Remove Perseus (NGC1275), Ophiuchus (near GC),
and Norma (near Galactic plane)
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» Derive 95% confidence limits on the gamma-ray flux for
a grid of particle masses and representative final states

| Flux limits depend on assumed spectrum! |




Results from the

---- Fornax T
——— Coma S]] £210%, M_,=10' M,

.+ £220%, M_=10°M

“sun

Coma
« £220%.M_=10"M
cut

“am

£210%,M_=10'M__

10-21

' 72]
o
-
=
O
A
>
O
Vv

NFWonly —

cluster —7
galaxies

100
WIMP Mass [GeV]

3
<0 v>|cm'/s)

Fomax, (=105, M _=10"M__ [
Fomax, (=20%, M_=10" M,
Coos

o, {=10%, M _=10" M__

Conm, , [=20%, M _~10°M__ H

1000
WIMP Mass [GeV]

» Constraints on MSSM models depending on substructrue




Solid: with subs. (My, =10"°M_)
Dotted: w/o subs.

» With substructure predicted by extrapolating simulations,
clusters exclude thermally produced WIMPs with masses
less than ~150 GeV.




» Clusters and filaments/superclusters are particularly
good targets for decay searches (p instead of p?).
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Results from the 1st Year
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» Strong limits on the dark matter lifetime for a wide range
of particle masses and decay final states, including models
fitting the e* data.
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» For DM decay clusters typically give stronger constraints

bb final state - constraints from dSph (M, )

12

"/' T
'|
)

/

T III‘III

Ursa Minor
Ursa Major I
Bootes I
Sextans
Fomax
Draco
Sculptor

Coma Berenices

I T T T |

Galactic + EG
Previous Constraints

100

1000

DM mass [GeV]

DM lifetime [s)

bb final state - constraints from M31

T lllllll T T T

[ Galactic + EG

[ Previous Constraints

T 1T

—— NFW profile, point-like source limit
——— Isothermal profile, point-like source limit
M__, extended source limit

lllllll 1

100
DM mass [GeV]

than other isolated extragalactic objects.




» Stacked for five clusters: no significant
detection of gamma rays
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» Stacking of a few clusters with 2-3 years of data gives a
factor of ~ 2-3 improvement in constraints.
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» Larger cluster samples and more data to come!







» For a range of DM models, IC emission from the
scattering of the CMB by e*/e- produced in DM annihilation
and decay peaks in the hard X-ray band.

IC emission &, decay
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DM models
normalized to
Fermi limits:

—— bb, 10 GeV
— — bb, 100 GeV
—— tau, 10 GeV
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Athena WFI

hypothetical WFI
with lower NXB

*6-10 keV bin includes background from cluster thermal emission.
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» Planned X-ray telescopes will have (at best) similar
sensitivity to Fermi to low mass WIMPs.

» Interesting constraints could be within reach with an

appropriately planned mission.
(low background, large FOV, large EA around 10 keV)




» Accelerated in accretion/merger shocks, AGN, and SNe

* CR protons can survive for a long time and add
pressure support to the cluster

from CR electrons in the

cluster magnetic field

* CR proton collisions with ICM
 |C scattering by CR electrons
(also hard X-ray)




« at most ~ 1-10% of the thermal energy density in
nearby clusters

« little bias in cluster masses = good for cosmology

(i.e. secondary electrons from p-p collisions)

» To produce the observed radio flux without
overproducing gamma-ray emission implies a fairly
high minimum average magnetic field in some cases.
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» Minimum average magnetic fields as high as ~ 7 uG
for nearby radio halo clusters in the hadronic model.
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» CR energy density < 2% and average B > 1.7 uG
compared to RM average B ~ 2 uG (Bonafede et al. 2010)




» The non-detection of clusters by Fermi excludes many
dark matter models that could explain the local positron
excess.

» Clusters are powerful probes of dark matter decay.

» Dark matter searches are something to consider in
planning future X-ray telescopes.

» The Fermi limits also imply low cosmic ray energy
densities in clusters and place constraints on a hadronic
origin of radio halos.




