The Nuclear Spectroscopic Telescope Array

Fiona Harrison

Tuesday, November 1, 2011

INTEGRAL, Swift NuSTAR

Tuesday, November 1, 2011

NuSTAR two-telescope total collecting area

Sensitivity comparison

```
1 Ms Sensitivity
3.0 x 10<sup>-15</sup> erg/cm<sup>2</sup>/s (6 -
10 keV)
1.2 x 10<sup>-14</sup> (10 - 30
keV)
```

```
1 Ms Sensitivity

3.0 x 10<sup>-15</sup> erg/cm<sup>2</sup>/s (6 –

10 keV)

1.2 x 10<sup>-14</sup> (10 – 30

keV)

Imaging

HPD ~50"

FWHM 10"

Localization 2" (1–sigma)
```

```
      1 Ms Sensitivity

      3.0 x 10<sup>-15</sup> erg/cm<sup>2</sup>/s (6 -

      10 keV)

      1.2 x 10<sup>-14</sup>

      (10 - 30)

      keV)

      Imaging

      HPD
      ~50"

      FWHM
      10"

      Localization
      2" (1-sigma)
```

Field of View FWZI 12.5' x 12.5' FWHI 10' @ 10 keV 8' @ 40 keV 6' @ 68 keV 1 Ms Sensitivity 3.0 x 10⁻¹⁵ erg/cm²/s (6 – 10 keV) 1.2 x 10⁻¹⁴ (10 – 30 keV) Imaging HPD ~50" FWHM 10" Localization 2" (1–sigma)

Field of View FWZI 12.5' x 12.5' FWHI 10' @ 10 keV 8' @ 40 keV 6' @ 68 keV

Timing relative 100 microsec absolute 30 msec

1 Ms Sensitivity 3.0 x 10⁻¹⁵ erg/cm²/s (6 – 10 keV) 1.2 x 10⁻¹⁴ (10 – 30 keV) Imaging HPD ~50" FWHM 10" Localization 2" (1–sigma) Timing

relative 100 microsec absolute 30 msec

Spectral response

threshold 2.5 keV $\Delta E @ 6 \text{ keV} 0.6 \text{ keV}$ FWHM $\Delta E @ 60 \text{ keV} 1.0 \text{ keV}$ FWHM

Field of View FWZI 12.5' x 12.5' FWHI 10' @ 10 keV 8' @ 40 keV 6' @ 68 keV 1 Ms Sensitivity 3.0 × 10⁻¹⁵ erg/cm²/s (6 – 10 keV) 1.2 × 10⁻¹⁴ (10 – 30 keV) Imaging HPD ~50" FWHM 10" Localization 2" (1–sigma)

Field of View FWZI 12.5' x 12.5' FWHI 10' @ 10 keV 8' @ 40 keV 6' @ 68 keV

Timing

relative 100 microsec absolute 30 msec

Spectral response

threshold 2.5 keV $\Delta E @ 6 \text{ keV} 0.6 \text{ keV}$ FWHM $\Delta E @ 60 \text{ keV} 1.0 \text{ keV}$ FWHM

Target of Opportunity response <24 hr (reqmt) typical 6-8 hours 85% sky accessibility

Mission Profile

Pegasus XL Mar 3 2012

Mission Profile

Pegasus XL Mar 3 2012

6° inclination 550 x 600 km Low background 55% observing efficiency

2-year baseline science mission

Baseline Science Mission

Key science goal	Observations	Time (weeks)
Locate massive black holes	Deep and wide-field extragalactic surveys (GOODS S, COSMOS, BAT-shallow)	23
Study the population of compact objects in our Galaxy	Survey Galactic Center and other fields of varied ages (spiral arms, bulge)	20
Explosion dynamics and nucleosynthesis in core collapse and 1a SNe	Pointed observations of young (τ < 500 yr) remnants – Cas A, SN1987A, GX1+9 ToO observations of nearby SN1a	22
Understanding relativistic jets in supermassive black holes	Contemporaneous multiwavelength observations of GeV/ TeV blazars	6
Other Objectives	Observations	Time
Varied	In final planning stage	33

Galactic Surveys

Tuesday, November 1, 2011

Population Studies

Understand compact object properties in regions of different ages Hard X-rays can: distinguish NS vs BH HMXBs, distinguish intermediate polars

Galactic chronology/understanding evolution/end states of binaries – HMXBs (~10 MYr) CVs (Gyr)

Field	Size (deg)	Field center	Depth/pointing
Galactic center/ inner bulge	0.8 x 2	l = 337.5°, b = 0°	12 ksec
Norma	0.8 x 2	$I = 0^{\circ}, b = 0^{\circ}$	12 ksec
Latitude survey	0.13 x 0.13	L=+/-2.5,5 deg, b=0	100 ksec

Extragalactic Surveys

First sensitive surveys 10 – 30 keV

- What AGN populations dominate the background at 30 keV?
- How were black holes growing as a function of redshift, independently of absorption?
- Does the obscured AGN fraction increase with redshift?
- Do the most heavily obscured AGNs reside in specific host-galaxy environments?

See Ballantyne et al. 2011 ApJ

Extragalactic Surveys

Field	Area	Exposure	Depth (10 – 30 keV) erg/cm ² /s
E-CDFS	0.3 deg ²	200 ksec	2 x 10 ⁻¹⁴
COSMOS	1 deg ²	50 ksec	4×10^{-14}
BAT shallow	3 deg ²	7 ksec	$1 - 1 \times 10^{-13}$

Galaxy Clusters

First true imaging observations E> 10 keV

Detect/characterize (controversial non-thermal components)

Halos and relics. Constrain magnetic fields

• Characterize hot thermal emission in vicinity of shock

fronts

50 ksec simulation of NuSTAR A2256 (15-40 keV) - cluster with several steep spectrum radio sources and temperature struction

Galaxy Cluster Targets Non-thermal emission

Target	∆F _x /F _x - Error on NT component (rel.)	Exposure (ksec)
A2163	20%	200
A2256	20%	300
NGC 1275	20%	200
Bullet	30%	500

Merger Shocks

Target	$\Delta T_{dw} / T_{dw}$	$\Delta T_{up} / T_{up}$	Exposure
A754	10%	30-40%	200
Coma	20%	30-50%	900

Additional Science

- Supernova remnants
- Planetary Wind Nebulae
- Supernova la ToO
- Magnetars
- X-ray Binaries
- Pulsars
- Gamma-ray binaries
- Flaring protostars
- Sun

- AGN physics (corona temperature)
- Ultra-Luminous Infra-Red Galaxies (ULIRGs)
- Compton-thick AGN
- Starburst galaxies
- Galaxy clusters
- Blazars
- Radio galaxies
- Ultra-Luminous X-ray Sources

Partnering Opportunities with XMM and eROSITA Measuring spin in super-massive black holes

MCG 6-30-15 simulation (NuSTAR 150 ksec) – relativistic reflection + warm absorption (black) vs. absorber only (black)

Partnering Opportunities with XMM and eROSITA Understanding the nature of ultra-luminous X-ray sources

Also – magnetars, X-ray binaries

Optics

Depth-graded multilayer coated optics - 133 shells

Simulated

Calibration data

Focal Plane

Tuesday, November 1, 2011

Tuesday, November 1, 2011

WISE-eROSITA Synergy - Clusters

•WISE is sensitive to L* galaxies out to z~1.2 all-sky
•massive clusters at z>1 (e.g., SPT clusters) clearly identifiable in WISE images
•vast majority of eROSITA clusters will be obvious in WISE data; WISE will be important for confirming eROSITA cluster candidates [currently working with Planck team on their SZ cluster sample]

- Survey of WISE-selected z>1 cluster candidates started (Subaru+SOAR+MMT imaging in the last month; first Keck/LRIS spectroscopy later this week)
 eROSITA- get X-ray masses; WISE study galaxy populations
- WISE help with AGN identification in high-z clusters higher redshift clusters more likely to host an AGN (e.g., Galametz et al. 2009; Martini et al. 2009)

Supernova Remnants

Cas A (> 10 keV) 1 Msec

Tycho (> 10 keV) 200 ksec

See poster by Zoglauer et al. 22