

X-ray Source Populations of Local Group Galaxies

Prospects for eROSITA

Frank Haberl (MPE)

- Introduction
- Transients in M 31
- The remarkable HMXB population of the SMC

First eROSITA International Conference – Garmisch-Partenkirchen, Germany, October 17-20, 2011

What can we learn from observations of local group galaxies?

- Different types of galaxies
- Sources at "same" distance; similar, low foreground absorption accurate luminosity
- Learn more about the source populations in the Milky Way
- Understanding of unresolved emission from distant galaxies
- X-ray source classes
 - X-ray binaries (XRBs)
 - Low and High Mass XRBs

An exceptionally large population of HMXBs in the SMC Time variability - bright transients

- Supersoft X-ray sources
 - Classical SSSs Established as class in the Magellanic Clouds
 - Optical novae

The major class of supersoft X-ray sources in M31 Supersoft states last from weeks to years

- Supernova remnants

Resolved with eROSITA in SMC and LMC (typical size 2-3 arcmin)

- Nuclear sources (M33)
- Ultraluminous X-ray sources (ULXs)
- Diffuse emission in disk and halo

<u>The Andromeda</u> <u>Galaxy M 31</u>

H. Stiele 2010 PhD Thesis Stiele et al. 2011, A&A 534, A55

More than 1900 sources Classification and identification: Hardness ratio and time variability Correlation with catalogues from other wavelength

Sb spiral galaxy Distance ~800 kpc

Spectral classification using hardness ratios

XMM-Newton EPIC 0.2-2 keV color image

M 31 centre

2000-06-25

XMM-Newton/Chandra M31 nova detections

<u>before 2006</u>

- Optical novae: major class of supersoft X-ray sources in M 31
- More than 30% of optical novae show SSS state Pietsch et al. 2005, A&A 442, 879; Pietsch et al. 2007, A&A 465, 375 Henze et al. 2010, A&A 523, A89; Henze et al. 2011, A&A 533, A52

X-ray surveys of the Small Magellanic Cloud

• Einstein IPC

70 discrete X-ray sources (Wang et al. 1991, Wang & Wu 1992)

• ROSAT PSPC and HRI

517 sources (PSPC), 121 sources (HRI, 46 additional)

(Haberl et al. 2000, Sasaki et al. 2000)

Diffuse emission 10^{6} - 10^{7} K (Sasaki et al. 2002)

Mosaic of ROSAT pointed observations large field of view (1 degree radius) 6x6 degree field (~18 square degrees) 0.1-2.4 keV band moderate energy resolution

Classification of X-ray sources Spectral information (hardness ratios) X-ray to optical flux ratio Spatial extent Flux variability

Irregular dwarf galaxy Distance 60 kpc

An exceptionally large number of HMXBs in the SMC

Many discoveries of X-ray transients with RXTE, ASCA, ROSAT, BeppoSAX Chandra and XMM-Newton can do spectral and timing analysis down to 10³⁴ erg/s

The Be/X-ray binary pulsar XMMU J010253.1-724433

Haberl & Pietsch 2008, A&A 484, 451

The Be/X-ray binary pulsar XMMU J010253.1-724433

EPIC-pn: 17.7 ks 1.4 cts/s $L_x = 1.7 \cdot 10^{37} \text{ erg/s}$ (0.2-10 keV)

eROSITA half-year survey: 400 s: spectrum with 800 cts photon index can be determined to ± 0.2

Haberl & Pietsch 2008, A&A 484, 451

HMXBs and Star Formation History

HI map Stanimirovic et al. (1999)

- HMXBs in regions with star formation bursts 25-60 Myrs ago
- number of HMXBs correlates with SFR at 42 Myr

Antoniou et al. 2010

Neutron star spin periods

eROSITA Survey Parameters

- Field of view
- Scan speed longitude
- Scan speed latitude 4-6 hour per scan / 6-4 scans per day i.e. 40-60s for central scan, in total 250s
- 4 year scan mode

=> 8 x 250 s = 2000 s typical total exposure

1[°] diameter

180° in **180** days / **1°** per day

- 1000 s sensitivity (from Cappeluti et al. 2010) 5 σ upper limit 3x10⁻¹⁴ erg cm⁻² s⁻¹ (0.5-2 keV) 7x10⁻¹³ erg cm⁻² s⁻¹ (2-10 keV)
 - => in one day 2x10⁻¹³ erg cm⁻² s⁻¹ (0.5-2 keV)

Sensitivity for Local Group Galaxies (0.5-2 keV)

LMC	50 kpc	6x10 ³⁴ erg s ⁻¹
SMC	60 kpc	9x10 ³⁴ erg s ⁻¹
M 31	780 kpc	1.5x10 ³⁷ erg s ⁻¹
M 33	795 kpc	1.5x10 ³⁷ erg s ⁻¹

Expected Source Numbers

Extrapolating from XMM surveys

Limiting flux	number o	of sources
10 ⁻¹³ erg cm ⁻² s ⁻¹	M 31	M 33
	Σ	Σ
>25	3 3	1 1
16-25	- 3	1 2
10-16	8 11	24
6.3-10	8 19	1 5
4-6.3	12 31	2 7
2.5-4	17 48	- 7
1.6-2.5	15 63	29

<u>Summary</u>

Large samples of X-ray sources are available in Local Group galaxies

Observations of many systems simultaneously at similar distance / low foreground absorption Statistical studies

Global properties Population studies example: HMXBs in SMC as tracer for recent SF In regions with star formation bursts 25-60 Myrs ago Number of HMXBs correlates with SFR at 42 Myr

MCs: Sensitivity ~10³⁵ erg/s New HMXBs in LMC, SMC and Magellanic Bridge SSSs (outskirts in the older stellar population) SNRs

M 31/33: Sensitivity ~10³⁷ erg/s hard X-ray transients Classical novae