Normal galaxies and eRosita all-sky survey

X-ray emission from normal galaxies

- no AGN
- hot ISM

- X-ray binaries:
 - old galaxies LMXBs
 - star-forming galaxies HMXBs
- faint compact objects

Star-forming galaxies

Grimm, Gilfanov, Sunyaev 2003 Mineo, Gilfanov, Sunyaev 2011, 2012

Star-forming galaxies – total Lx

 $L_{x} \approx SFR \times 4 \cdot 10^{39} \text{ erg/s}$

redshift range z~0–1.3

rms~0.4 dex scatter is real possible origin: age, metal abundances ...

Star-forming galaxies – total Lx

Elliptical galaxies

Marat Gilfanov

Garmisch, 20/10/2011

Populations of LMXBs

X-ray luminosity functions

compact X-ray sources in spiral and elliptical galaxies have different XLFs

different accretion regimes in LMXBs and HMXBs:

- Roche lobe overflow
- accretion from the stellar wind

Ultra-luminous X-ray sources (ULX)

- ULXs are associated with star-formation
- log(L_X)≤40 sources must be a tail of the distribution of "usual" HMXBs
- nature of log(L_X)≥40 sources still unclear:
 - unexplored accretion regimes
 - intermediate mass black holes

Implications for the binary evolution

 \diamond the large specific frequency of HMXBs, per unit SFR

 $N_{HMXB}(L > 10^{35}) \approx 135 \times \text{SFR}$

- ♦ implies high efficiency of HMXB formation
- ♦ 20-30% of NS and BH become X-ray sources within 100 Myrs from their formation
- \diamond 3-4% of BHs become X-ray sources with L_X>10^{39} erg/s
- ♦ LMXBs are extremely rare 1 out of 10⁶ NS becomes bright X-ray source in an LMXB
- ♦ accreting NS and BH of stellar mass account for ~5-7% of Cosmic X-ray Background

Implications for the massive stars IMF

accretion of radiation pressure driven stellar wind

Normal galaxies in the eRosita all-sky survey survey

- ✓ ~100 AGN per sq.degree
- ~2 galaxies per 3-4 sq.degrees (~1 elliptical, ~1 spiral)
- ~15-20 thousand normal galaxies in the survey

Ranalli et al., 2006

...as seen by eRosita

10 kpc=40 arcsec @ D=100 Mpc

effective angular resolution in the survey ~30 arcsec HPD

 \Rightarrow eRosita will mostly measure total luminosity

Distributions of detected galaxies

luminosity

Garmisch, 20/10/2011

Normal galaxies in the survey

- ~2 galaxies per 3-4 degr² (~1 elliptical, ~1 spiral)
- ✓ ~15-20 thousand galaxies in total
- ✓ 90% closer than ~200–400 Mpc
- ✓ a typical galaxy in the survey:
 - D ~ 70-90 Mpc
 - log(L_X) ~ 40.5 − 41
 - star-forming SFR~20 M_{\odot} /yr
 - elliptical log(M_{*})~11.3
 - listed in the IRAS and/or 2MASS catalogs

luminosity distributions

Prokopenko & Gilfanov, 2009

Garmisch, 20/10/2011

Ultra-luminous X-ray sources

- ~85 sources with log(L_X)>40 within 35 Mpc
- ~80% log(L_X)>40 sources the only ULX in a galaxy
- XLF of brightest ULXs may be possible

Ultra-luminous X-ray sources

- ~85 sources with log(L_X)>40 within 35 Mpc
- ~80% of log(L_X)>40 sources
 the only ULX in a galaxy
- XLF of brightest ULXs may be possible
- investigation of potentially most exotic type of compact sources in galaxies

