Distant X-ray clusters and their applications with XMM-Newton and eROSITA

Rene Fassbender (MPE)

rfassben@mpe.mpg.de

eROSITA Conference, Garmisch, 18. Oct 2011

Agenda

- I. Distant X-ray Galaxy Clusters: Science & Status
- II. The XDCP Cluster Sample up to z~1.6
- III. Prospects and Challenges for eROSITA Cluster Studies at z>1

I. Distant X-ray Galaxy Clusters: Science & Status

Tracing the High-z Evolution of X-ray Galaxy Clusters Observationally

Applications in Cosmology Applications in Astrophysics

DM structure formation cluster number density evolution geometric gas mass fraction test absolute distances (X-ray+SZE) large-scale structure/cosmic web formation of the ICM thermodynamic evolution of ICM metal enrichment of ICM high-z merging of clusters/halos AGN-ICM interactions at high-z galaxy-ICM interactions

formation of red-sequence galaxies galaxy transformation processes BCG formation and evolution

Distant X-ray Clusters as Dark Energy Probes

- Dark Energy Constraints based in the evolution of the galaxy cluster mass function are among the best of all individual DE probes, with a high potential for future studies
- current constraints are derived from the comparison of 49 local clusters with 37 intermediate redshift clusters (z>0.35, 17 at z≥0.5, 2>0.8) with <z>=0.55

Vikhlinin et al. 2009

Rene Fassbender (MPE)

Galaxy Cluster Surveys based on ICM Signature (Incomplete) Schematic View all sky

Rene Fassbender (MPE)

The top 10 most distant clusters known spectroscopically confirmed + X-ray signature

z	Name	Sel.	L _{X,bol} [10 ⁴⁴ erg/s]	M200 [10 ¹⁴ M _{sun}]	References	
2.07	CL J1449+0856	MIR	0.9	0.7	Gobat+11	
1.75	XMMU J1053+5723	Xray	0.5	0.6	Henry+10	
1.62	XCL J0218-0510	MIR	0.4	0.7	Tanaka+10, Pierre+11 Papovich+10	
1.58	XMMU J0044-2033	Xray	6.1	3.0	Santos+11	
1.56	XMMU J1007.4+1237	Xray	2.1	1.7	Fassbender+11	
1.49	XMMU J0338+0021	Xray	1.1	1.2	Nastasi+11	
1.49	ISCS J1432.4+3250	MIR	3.5	2.5	Brodwin+10	
1.46	XCS J2215.9-1738	Xray	2.2	2.0	Hilton+10, Stanford+06, Bielby+10	
1.41	ISCS J1438.1+3414	MIR	2.2	2.2	Brodwin+10, Stanford+05	
1.39	XMMU J2235.3-2557	Xray	10.0	6.6	Rosati+09, Jee+09, Mullis+05	
Rene Fassbender (MPE)					7	

II. The XDCP Cluster Sample up to z~1.6

AIP

LMU

The XMM-Newton Distant Cluster Project Team

Hans Böhringer (PI, MPE) **Rene Fassbender** (MPE) Alessandro Nastasi (MPE) Robert Suhada (USM) Martin Mühlegger (MPE) **Daniele Pierini** (MPE) Miguel Verdugo (MPE) Joana Santos (ESAC Madrid) Piero Rosati (ESO) Arjen de Hoon (AIP) Axel Schwope (AIP) **Georg Lamer** (AIP) Jan Kohnert (AIP) **Gabriel Pratt** (Saclay) Joe Mohr (USM Munich) Hernan Quintana (U Catolica) **Nelson Padilla** (U Catolica)

USM

A XMM-Newton Distant Cluster Project (XDCP) Primer

Aim: find & study distant X-ray clusters at z>0.8

Science Goals:

- multi-wavelength studies of distant clusters
- galaxy evolution in the densest environments
- high-z scaling relations
- cluster number density evolution

XDCP Assets:

- >200 X-ray selected candidates at z>0.5 from 76deg² (49deg² core area)
- follow-up imaging data for >90% of distant candidates and for >400 X-ray clusters over all redshifts
- spectroscopic follow-up of high-z candidates >50% complete
- largest sample of distant X-ray clusters to date

Fassbender 2008, arXiv:0806.0861 http://www.xray.mpe.mpg.de/theorie/cluster/XDCP/xdcp_index.html Rene Fassbender (MPE) The published XDCP Sample of 22 X-ray Clusters at 0.9<z<1.6

17 clusters at z≥1.07 clusters at z>1.3

Fassbender et al. 2011, on the arXiv soon

almost homogeneous redshift coverage all the way to z~1.6

full XDCP sample: 33 confirmed systems at z>0.8

Fassbender et al. 2011, on the arXiv soon

median cluster mass of sample 2×10¹⁴ M_{sun}

Fassbender et al. 2011, on the arXiv soon

The two least likely XDCP Clusters

exclusion curves from Mortonson et al. 2011

XMMU J1230.3+1339 at z=0.975 Multi-component View inside R₂₀₀

Fassbender et al. 2011, arXiv:1009.0264Rene Fassbender (MPE)

III. Prospects and Challenges for eROSITA Cluster Studies at z>1

Distant Cluster Expectations for eROSITA

N(>z) clusters with ≥100 counts

Best Fit Expectations

Reichert et al. 2011, in press, arXiv:1109.3708 Rene Fassbender (MPE)

Distant Cluster Detectability with eROSITA

all sky survey detectability as extended X-ray source

The Chandra-eROSITA Image Simulator

goal: build up a distant cluster 'mock' data base for eROSITA performance tests based on real observations, i.e. with proper cluster structure and AGN contamination

developed by Martin Mühlegger

Luminosity-based Mass Estimates at z>0.8

```
M = (1.64 \pm 0.07) \cdot (L_X [10^{44} \text{ erg s}^{-1}])^{0.52 \pm 0.03} \cdot E(z)^{-0.90^{+0.35}_{-0.15}} 10^{14} M_{\odot}
```


Reichert et al. 2011, in press, arXiv:1109.3708 Rene Fassbender (MPE)

Photometric Cluster Identification and Color-based Redshift Estimation out to z≥1.5

The Need for Near-Infrared Data at z>1.2characteristic L* magnitudes at z=1.5: $R_{AB}=25.9$, $I_{AB}=24.2$, $z_{AB}=23.8$, $J_{AB}=21.9$, $H_{AB}=21.3$, $Ks_{AB}=20.8$

r_{lim}∼23.9 mag i_{lim}∼23.6 mag z_{lim}∼22.3 mag

+H_{lim}~22.4 mag (21.0 Vega) z=1.34

eROSITA z>1 Cluster Challenge Overview

Task	Challenge	Challenge Level (1-5)
source detection of extended sources	need purity levels >99%, every 1% impurity yields ~1000 spurious sources	+++++
optical and NIR imaging follow-up with 4m+ telescopes	deep, efficient data acquisition and reduct. with accurate color-based z-estimates out to $z\sim1.6$ for several 1000 sources	+++
spectroscopic follow-up (8m+ tel.)	redshift measurements for hundreds of clusters up to $z\sim1.6$	+++
mass estimates from $M-L_X$ scaling relation	availability of an accurately calibrated M-L _x relation up to z~1.6	++
completeness, contamination & bias evaluation	characterization of AGN contamination effects on detection efficiency and $L_{\rm X}$ and $T_{\rm X}$ biases	+++
deep X-ray follow-up observations	deep (Chandra) X-ray data for a suffici- ently large sub-sample to allow a detailed characterization of z>1 eROSITA clusters	++++

Summary & Conclusions

- 1. The XMM-Newton Distant Cluster Project has compiled the largest sample of high-z X-ray clusters to date and is hence an important pathfinder survey for high-z eROSITA applications
- 2. A first XDCP sample of 22 clusters at 0.9 < z < 1.6 is about to be published (17 at $z \ge 1$ and 7 at z > 1.3) with a median system mass of $2x10^{14}M_{sun}$
- 3. The currently most realistic eROSITA forecasts predict about 1100 clusters at z>1.0 and 90 systems at z>1.4 in the full survey with a minimum of 100 counts each
- 4. All-sky eROSITA cluster identifications at the highest redshifts will inevitably have to rely on an X-ray source extent criterion, which results in a major challenge for the cluster detection algorithms
- 5. Efficient ground-based follow-up techniques for cluster identifications out to at least z~1.6 are now available and X-ray luminosity-based mass estimates at high-z are becoming reliable