AGN Feedback in Clusters

Andy Fabian Institute of Astronomy, Cambridge UK

With much help from Jeremy Sanders and others

Duty cycle is ~100%

See also Birzan+04, Rafferty+06+08, Dunn+F07

Issues

- Total Energy not an issue.
- How does energy get distributed?
- How close is the heating/cooling balance? Feedback too good?
- Observations suggest better than 10% for many Gyr in some objects.
- HOW DOES THE AGN DO THIS?
- Moreover, (how) is coolest X-ray gas

(ie T<5.10⁶K with radiative cooling time ~10⁷yr) prevented from cooling?

- Much of the Feedback is maintenance
- Continuous and "gentle"
- Some outbursts occur (MS07, Cyg A etc), but this does not necessarily disrupt core

~3.5PV measured in thick rims (Graham+08)

Power in ripples (sound waves) ~ X-ray luminosity within 70 kpc

Also seen in Centaurus, Virgo...

Friday, November 18, 2011

Optical Fabian+08

Salome+08 CO measurements

Salomé, P. et al.: Cold gas in the Perseus cluster core: Excitation of molecular gas i

Salored, P. et al.: Cold gas in the Persens cluster core: Excitation of molecular gas in filaments

Fig.2. CO(1-0) and CO(2-1) spectra obtained at all the positions observed as indicated at lower right in each diagram. The channel width is 42 km/s. On the left hand side are the CO(1-0) lines detected with the a100 and b100 receivers. In the middle are the results obtained for the CO(2-1) line with the A230 and B230 receivers. On the right hand side are the CO(2-1) lines computed with both A230 and B230 merged with previous HERA data and smoothed to the 3 mm beam size.

Almost 10¹¹ Msun of cold gas in Perseus

Friday, November 18, 2011

6Dec (")

Spectrum of these filaments is unlike anything in Galaxy, other than Crab

and due to energetic particles (the hot gas?) Ferland+08/9

Ferland+08/09

- Energetic particles produce
- Ionized gas
 - Heating
- Neutral gas
 - Shower of suprathermal electrons
 - Secondary excitation and ionization
 - less heating

Friday, November 18, 2011

Properties of filaments

- Magnetic Fields B~70uG
- Diameter~70pc, length many kpc
- Mass usually dominated by molecular gas
- Hot ICM particles penetrate cold gas, providing secondary ionization

 Filament mass growing at 10-100 Msun yr

(Fabian+11)

In other words

 Innermost hot gas cools radiatively through X-ray emission to ~10⁷K, then plunges to <10⁴K by mixing with cold filaments

(cf Fabian+01,02, Soker04)

NGC1275 with HST Fabian+08

Perseus SFR~20 Msunpyr Canning+10

RXCJ1504 Ogrean+10 z=0.2

14 S. Ehlert et al. +10 MACS J1931 z=0.35

Figure 12. Optical structure of the BCG of MACS J1931.8-2634. (a): SuprimeCam BRz image of the central 30 arcsec × 30 arcsec. (b): For this image, the

SFR~170 Msunpyr

10 1 12 14 18 18 2 22 24 25 25 page score surt owner score sore sore sore sore sore sore sore

Temperature

Pressure

X-ray image of M87 / Virgo Forman+07

Friday, November 18, 2011

Cool X-ray gas in Centaurus

200 ks Chandra observation

Temperature (keV) Shows feedback (cavities) and cool gas (~0.7 keV) in CCD spectra How much gas is there at low X-ray temperatures?

1.5

2.5

Cen cluster: Abundance profile implies little diffusion/mixing

Spectral fitting limits on gas kT

Friday, November 18, 2011

LETTER TO THE EDITOR

Herschel observations of FIR emission lines in brightest cluster galaxies *

A. C. Edge¹, J. B. R. Oonk², R. Mittal³, S. W. Allen⁴, S. A. Baum³, H. Böhringer⁵, J. N. Bregman⁶, M. N. Bremer⁷, F. Combes⁸, C. S. Crawford⁹, M. Donahue¹⁰, E. Egami¹¹, A. C. Fabian⁹, G. J. Ferland¹², S. L. Hamer¹, N. A. Hatch¹³, W. Jaffe², R. M. Johnstone⁹, B. R. McNamara¹⁴, C. P. O'Dea¹⁵, P. Popesso⁵, A. C. Quillen¹⁶, P. Salomé⁸, C. L. Sarazin¹⁷, G. M. Voit¹⁰, R. J. Wilman¹⁸, and M. W. Wise¹⁹

Friday, November 18, 2011

Centaurus cluster

×

Crawford+05

1.2Ms stack of XMM RGS spectra Sanders+Fabian+10

H1821+643 z=0.3 Russell+10

3C186 Siemiginowska+10 z=1.07

3C294 (z=1.785) and 4C23.56 (z=2.5)

Fabian+03, Erlund+06

Blundell, Fabian11

Summary

- Kinetic mode feedback operates in most massive galaxies, those with hot atmospheres, maintaining stellar mass.
 Parts of feedback loop observed (bubbles, sound waves, warm, cool and cold gas)
- Inner parts of hot atmosphere cooling radiatively and by mixing into cold gas

- e-ROSITA will find many more clusters including cool cores and open up study of feedback evolution
- Central quasars in clusters will complicate identifications
- ICCMB produces extended X-ray emission from giant radio galaxies; such objects can be more numerous than clusters above z~1.5