The Magneticum Pathfinder Simulations

Klaus Dolag

Universitäts-Sternwarte München

Cosmological, hydrodynamical simulations which at the same time allows predictions for ICM and stellar component for ongoing/future missions.

18/10/2011 - p. 2

Mock optical/x-ray observations using SkyLens (Meneghetti 2010), X-Mass (Rasia 2007) and Phox (Biffi 2011).

Magneticum

DM simulation (M,M–XXL) 72 byte per DM particle

Hydrosimulation ca. 800 byte per DM particle

M_dm = 6.9e8, M_gas =1.4e8 [Msol/h]

As much as possible physics ! (cooling, star-formation, conduction, chemistry, blackholes, magnetic fields ...) Target: Next generation of European Supercomputing Center (under construction)

Aim of Magneticum Pathfinder Physics to be included: cooling + star formation + winds Springel & Hernquist 2002/2003 • Metals, Stellar population and chemical enrichment, SN-Ia, SN-II, AGB Tornatore et al. 2003/2006 + new cooling tables Wiersma et al. 2009 • BH and AGN feedback Springel & Di Matteo 2006, Fabjan et al. 2010 + various modifications Low viscosity scheme to track turbulence Dolag et al. 2005 Magnetic Fields (passive) Dolag & Stasyszyn 2009 Add ons:

- On the fly Sub-Find Springel et al. 2001/2010, Dolag et al. 2009
- Photometric code to assign optical/near-IR luminosities to galaxies (u,V,G,r,i,z,Y,J,H,K,L,M) Saro et al. 2006, Nuzza et al. 2010
- On the fly Cluster/Groups properties
- Novel sub-data access scheme allowing an efficient read-out of particles belonging to a galaxy cluster

Preliminary Results

Box 1/mr at z=2, currently at z=0.8

Preliminary Results (Galaxies)

Example luminosity function (A. Saro, work in progress)

Preliminary Results (Galaxies)

Color-Magnitude relation (A. Saro, work in progress)

Preliminary Results (Galaxies)

SSFR (compared to SAM and SDSS, Weinmann 2010)

High z Clusters (z=2)

Galaxy Clusters

Clusters in a light-cone $(8.8^{\circ} \times 8.8^{\circ})$ till z=2.0

Red sequence selection (A. Saro, work in progress)

SZ signal integrated till z = 5.2.

Simulated $0.5^{\circ} \times 0.5^{\circ}$ view of "Isolated" cluster (within 134 Mpc slice) vs. same cluster embedded in deep (z=5.2) light-cone .

Preliminary Results (ICM)

Comparison of simulated pressure profiles with observations (shape and scatter !).

Simulation

Phox (Biffi et al. 2011)

Simulation

- Phox (Unit 1) -> Photon Packages
- Phox (Unit 2) -> Projection

- Phox (Biffi et al. 2011)

Simulation

- Marger New York and an art of the State of the State of the Phox (Unit 1) -> Photon Packages
- Phox (Unit 2) -> Projection
 - Phox (Unit 3) -> Instrument

Phox (Biffi et al. 2011)

eRosita

Athena

Suzaku

XISSIM Ishisaki 2007

Conclusions

Conclusions

Cosmological, hydrodynamical simulations which at the same time allows predictions for ICM and stellar component for ongoing/future missions.

• Simulated stellar properties

luminosity function, colors, specific star-formation rates

• ICM properties

pressure profiles (shape and scatter !)

• Deep light-cones

important for outskirts, cluster finding

- Multi purpose X-ray simulator available (Biffi et al. 2011)
- Online interface (prototype)

