Prospects for Galaxy Cluster Research with eROSITA

Hans Böhringer (MPE)

With help from Gayoung Chon and Martin Mühlegger (MPE)

Hans Böhringer 1. Int. eROSITA Conference Garmisch 18.10. 2011

Overview

- Galaxy clusters as astrophysical laboratories
 - -- and probes to test cosmological models
- Statistics of galaxy cluster detections in eROSITA
- Dependence of cluster number counts on astrophysics and cosmology
- Studies with eROSITA clusters

Galaxy Clusters as Laboratories

For: galaxy population

intergalactic plasma

cluster dynamics

dark matter distribution

nucleosynthesis

AGN feedback

3

The Role of Galaxy Clusters in the Hierarchy of Large-Scale Structure

mass of galaxy clusters ~ $10^{14} - 10^{15} M_{sun}$

From the cluster population:

- Fluctuation amplitude and shape of P(k)_{DM} (over few Mpc range) by cluster abundance
- 2) Large-scale cluster density distribution P(k)_{CL} and its bias above P(k)_{DM}
- The evolution of the cluster population – testing the growth of structure
 - Evolution of internal cluster properties

From cosmological model predicted and observed X-ray luminosity function

Constraints on Cosmological Models and $\Omega_{\rm m}$ from the REFLEX Cluster Survey

REFLEX power spectrum

Volume-limited samples with boxlength of: 300, 400, 500 h⁻¹ Mpc

[Schuecker et al. 2002, 03]

Hans Böhringer

REFLEX II Power Spectrum (ACDM-Cosmology)

The lines give the prediction of the Concordance Cosmological Model with WMAP 5yr parameters

Balaguera-Antolinez et al. 2010

REFLEX II Power Spectrum (biasing)

The amplitude of the P(k) increases with increasing lower mass limit

Increase of the amplitude (above) for 6 volume limited subsamples

Comparison of Observational Model Constraints

Constraints strongest from WMAP But WMAP does not constrain w(DE) !

WMAP results (1 yr) REFLEX I results

Combined Constraints REFLEX & SN Ia on Ω_m and W_x

$$\Lambda \Rightarrow \rho_x(z) \quad ; \ w = \frac{P_x}{\rho_x}$$

Data from REFLEX and SN observations

Evolution of the Cluster Mass Function

Model constraints from the observation of the cluster mass function evolution: gas mass and Yx parameter as alternative observables (proxies)

Vikhlinin et al., Astro-ph 2008

Evolution of the Cluster Mass Function

Differential comoving cluster abundance (> Mass_{limit}) ster⁻¹ dz=0.1⁻¹

Assumptions for the Modelling for eROSITA

- Cosmological parameters: $H_0 = 70 \text{ km/s/Mpc}$ $\Omega_b = 4.5\%$ $\Omega_m = 0.30 \quad \Omega_\Lambda = 0.70 \quad \sigma_8 = 0.80 \quad + \text{ standard P(k)}$
- M L relation used see later
- Exposure maps for eROSITA Survey (from Robrade)
- Minimal count limit of 100 source counts (ROSAT >20-30 cts XMM-Surveys > 100 cts)
- Calculation of the detection limit per sky pixel & redshift shell
- For Galaxies: richness L_x relation (SDSS)
 - cluster galaxy luminosity function
 - evolutin of L* involving mostly passive evol. 14

Galaxy Cluster Number Counts in the eROSITA Survey

M. Mühlegger Ph.D. Thesis

N _{phot.}	all sky	extra	gal. Sky
50	~300 00	00 ~2	40 000
100	~140 0	00 ~1	05 000
500	~ 20 00	- OC	15 000
1000	~ 900	CO ~	6 700

Redshift extragal. Sky > 100 cts

> 0.3	~ 50 000
> 0.6	~ 10 000
> 0.8	~ 3 500
> 1.0	~ 900

M. Mühlegger, G. Chon, H. Böhringer

Number Counts of Clusters in the eROSITA Survey

Exposure distribution all-sky

Effective flux limit

 $F_{lim} \sim 8 \ 10^{-14} \ erg \ s^{-1} \ cm^{-2}$

Mass Limit of the Detected Clusters

17

Mass and Redshift Distribution of the Clusters

Böhringer et al. (in prep.)

Temperature measurements of eROSITA Clusters

Simulated spectrum of an eROSITA detected cluster at z = 0.2 T = 4 keV

Detected with 1000 cts

Simulation includes subtracted background

Hans Böhringer1. Int. eROSITA ConferenceGarmisch18.10. 2011

Evolution of the L - T Relation

Observed Evolution of the M - L Relation

X-ray luminosity for given cluster mass does not increase as fast with redshift as assumed in self-similar models !

Hans Böhringer

1. Int. eROSITA Conference Garmisch 18.10. 2011

Change of Number of Predicted Distant X-ray Cluster Number Counts

Reichert, Böhringer et al. 2011

Comparison to Simulations: M - T Relation

Reichert, Böhringer et al. 2011

Hans Böhringer

1. Int. eROSITA Conference Garmisch 18.10. 2011

Comparison to Simulations: L - T Relation

Comparison of models and observations favor early preheating

eROSITA will provide very precise data for very stringent comparison

Hans Böhringer1. Int. eROSITA ConferenceGarmisch18.10. 2011

Power Ratio & Center Shift Method

Power ratios are intensity normalized moments: see Buote & Tsai 1995, 96

P2/P0 quadrupoleP3/P0 hexapoleP4/P0 octopole

$$P_0 = \left[a_0 \ln(R_{ap})\right]^2 \tag{1}$$

$$P_m = \frac{1}{2m^2 R_{ap}^{2m}} \left(a_m^2 + b_m^2 \right)$$
(2)

where R_{ap} is the aperture radius . The moments a_{m} and b_{m} are calculated from

$$a_m(R) = \int_{R \le R_{ap}} S(x')(R')^m \cos(m\phi') \ d^2x'$$
(3)

$$b_m(R) = \int_{R' \le R_{ap}} S(x')(R')^m \sin(m\phi') \ d^2x'$$
(4)

Variance of the center shift with increasing aperture

$$w = \left[\frac{1}{N-1} \sum (\Delta_{I} - <\Delta >)^{2}\right]^{1/2} \times \frac{1}{r_{500}}$$

Böhringer et al. 2010

Substructure as Function of Mass

There is no significant change in the substructure statistics with increasing mass of the clusters. - Different from naiv expectations for a hierarchical structure formation scenario.

[Böhringer et al. 2010]

Substructure as Function of Mass in the Simulations

Results of cluster number forecast for different cosmological models

Overall Power Spectrum for 100 000 clusters

Simulations of a eROSITA type Survey with BOA input P(k)

The signal is about 3 – 4 sigma

H29

Observable Galaxies per Clusters

Magnitude range = 18.5 to 20.5 in i-band (< 22 in r-band)

Summary on the Number of Observable Galaxies

For a 15 000 deg² Survey (e.g. 4MOST):

up to 50 000 galaxy clusters

on average 50 galaxies/cluster = 2.5 Million galaxies visible for a spectroscopic limit of r = 22 / I = 20.5

Conclusions

- eROSITA is about 30 times more sensitive for the detection of clusters $\rightarrow \sim 100\ 000\ \text{cluster}$ will be detected with > 100 cts
- ~ 7000 cluster with > 1000 cts → temperature, morphology, ...
 wide range of astrophysical studies (e.g. scaling relations and feedback)
- LSS statistics (P(k) for $> 10\ 000$ clusters in ten redshift shells out to z = 0.6 (10x more precise than for REFLEX)
- Large potential for constraining cosmological model parameters also for Dark Energy equation of state and testing more exotic models