Future Optical & X-ray Facilities for Pulsar Studies

Werner Becker

Max-Planck Institut für extraterr. Physik

With input from: R. Mignani, P. Predehl, L. Strüder, N. Meidinger, G. Hasinger

and A. Parmar

Observatories and mission timelines

Future optical facilities

Summary of Pulsars detected at optical wavebands

PSR	Age	Mag	Tim	Spec	Pol	Photometry
	Log(yrs					
Crab	3.1	16.6	P	Yes	Yes	UV+UBVRI+JHK
1509-58	3.19	25.7			Yes	R
0540-69	3.22	22	P	Yes	Yes	UBVRI
Vela	4.05	23.6	P	Yes	Yes	UV+UBVRI+JH
0656+14	5.05	25	P			UV+UBVRI+JHK
Geminga	5.53	25.5	P	Yes		UV+UBVRI+JH
1055-52	5.73	24.9				U
1929+10	6.49	25.6				UV+U
0950+08	7.24	26				U+BVI
PSRJ0437-4715	9.2					UV
RXJ1856-3754	>6.0?	25.6				
RXJ0720-3125	6.4	26.2				UV+UBV-broad,R
RXJ1308.6+2127	>6.0?	28.6				V-broad
RXJ1605.3+3249	>6.0?	26.8				V-broad,R

14 neutron stars detected at optical wavebands (10 radio pulsars)

Pulsar's spin down flux density at Earth

For rotation-powered pulsars (magnetic braking model):

 $\dot{E} = 4 \pi^2 I \dot{P} P^{-3} \leftarrow spin down energy$ $DM \rightarrow d \leftarrow$ electron density model: (Cordes and Lazio 2002)

 \leftarrow spin down flux density at earth \leftarrow vital measure for detecting a pulsar

Spin down flux density as a function of pulsar age

Estimate of the interstellar column absorption

The neutral hydrogen column density

..... provides an estimate for the interstellar column absorption

Radio Pulsars detected at optical wavebands

Current optical facilities

NTT/La Silla (3.5m)

HST (2.4m)

GEMINI-S/Cerro, Pachon (8m)

SUBARU/Mauna Kea (8m)

VA

The road to today's Large Telescopes

Breakdown in the telescope concepts at the beginning of the 80s

Single-Mounted Arrays

small mirrors mounted on the same structure

Segmented mirrors (e.g. Keck):

primary mirror made of small assembled mirror units

• <u>Adaptive Optics</u> (e.g. VLT):

active mirror supports makes monolithic mirrors thinner and lighter

<u>Arrays of Telescopes</u> (e.g. VLTI):

interferometry-based array of multiple telescopes

Advent of generation of (>) 8m class telescopes:
 VLT (8m), GEMINI (8m), KECK (10m), SUBARU (8m), VLTI (16m) ...

The road to future X-Large Telescopes

- Paradigm to minimize weight/diameter: small + thin mirrors

 - From e.g. VLT: active and adaptive optics technology
 - From e.g. Hobby-Eberly: Low-cost structures/optics
- Many conceptual studies in progress, e.g.:
 - Giant Magellan Telescope GMT (24.5m US / Australia)
 - Thirty Meter Telescope TMT (30 m US / Canada)
 - Maximum Aperture Telescope MAXAT (30-50m, AURA)
 - EURO50 (50m, Europe)
 - Overwheiningly Large Telescope "OWL" (100 m / ESO-Garching)
 - European Extremely Large Telescope "E-ELT (30 60 m / ESO-Garching)

The road to future X-Large Telescopes

Proposed by scientists in Finland, Ireland, Spain, Sweden and United Kingdom

Pulsars are still challenging for ELTs

- About 4h of observing in phase with the pulsar's period will be required to build up a 300 bin pulse profile of a V=26 mag pulsar resembling the Crab
- Time-resolved spectroscopy, even at low resolution, will still be a substantial challenge:
 - e.g., spectra at 300 points around the cycle can be accumulated on a CCD by in phase charge transfer, but it will require roughly a week for a S/N ~ 5 and R~100

What follows the HST ?

Observatories and mission timelines

James-Webb Space Telescope

- Launch Date: summer 2013
- Aperture: 6.5 m segmented (18) mirror
- Expected lifetime: > 5 years
- NIRCAM: Near-IR and Visible Camera 6000 - 50,000 Å
 2.3 x 2.3 arcmin FOV
- NIRSPEC: Multi-Object Spectrograph 10,000 -- 50,000 Å 3 x 3 arcmin FOV
- MIRI: Mid-IR Camera and spectr.
 5,000 -- 28,000 Å
 2 x 2 arcmin FOV

• Orbit: L2, 1.5 M km apogee

The 5 Lagrange equilibrium points

$$\vec{F} = -\frac{GM_1m}{|\vec{r} - \vec{r_1}|^3}(\vec{r} - \vec{r_1}) - \frac{GM_2m}{|\vec{r} - \vec{r_2}|^3}(\vec{r} - \vec{r_2})$$

Lagrange points for the Earth-Sun System: L1 - L5

The L2 Orbit

Future X-ray facilities

Summary of rot. powered pulsars detected at X

- With EINSTEIN & EXOSAT:
- With ROSAT, ASCA & BSAX:
- After ~7 yrs with XMM & Chandra: 78 radio pulsars detected in X-rays

7 radio pulsars detected in X-rays

33 radio pulsars detected in X-rays

Age T	Pulsar category	ROSAT/ASCA	XMM/Chandra	Progress
< 10⁴ yrs	Crab-like	5	9	+4
10 ⁴ - 10 ⁵ yrs	Vela-like	9	15	+6
10 ⁵ - 10 ⁶ yrs	Cooling NS	5	5	
10 ⁶ - 10 ⁸ yrs	Old & nearby	3	8	+5
	other	1	2	+1
> 10 ⁸ yrs	ms-Pulsars	11	39	+28
	detected #	33	78	+45

Schematic of grazing incidence, X-ray mirrors

Wolter Type-I X-ray Telescope

X-ray Mirrors of current Missions

Chandra 4 nested mirror shells

XMM-Newton 3 mirror modules with 58 nested mirror shells

Observatories and mission timelines

ROSITA

Roentgen Survey

maging Telescope Array

with an

Basic Scientific Idea

To extend the ROSAT survey up to 15 keV

ROSITA design study

2 year mirror exposure experiment at ISS has shown:

dirty environment near ISS not suitable for an X-ray instrument

eROSITA: extended ROSITA

P.Predehl, et. al. 2006, (SPIE 6266-27)

 7 X-ray telescopes, each with 54 mirror shells + advanced XMM pn-CCD detector -> mounted onto the Russian Spectrum-RG mission

All-Sky Survey + pointed

- 4 + 1 year mission time
- Energy range 0.2 12 keV
- FOV: 1 degree
- Sensitivity ~ (10 30) × ROSAT
- Temporal res. ~ 50 ms
- Spectral res. ~ 100
- Angular res. ~ 15" (20" survey)

eROSITA: extended ROSITA

P.Predehl, et. al. 2006, (SPIE 6266-27)

 7 X-ray telescopes, each with 54 mirror shells + advanced XMM pn-CCD detector -> mounted onto the Russian Spectrum-RG mission

All-Sky Survey + pointed

- 4 + 1 year mission time
- Energy range 0.2 12 keV
- FOV: 1 degree
- Sensitivity ~ (10 30) × ROSAT
- Temporal res. ~ 50 ms
- Spectral res. ~ 100
- Angular res. ~ 15" (20" survey)

eROSITA: Schematic exposure map

ideal scan geometry: scanning along gal. longitude circles Average exposure ~ 1500 s

ecliptical coordinate system

Observatories and mission timelines

Simbol-X (0.5 - 70 keV)

A focusing telescope mission for hard X-ray astrophysics

Pathfinder for a formation flight with a free-flying detector and mirror module

An astrophysics mission proposed to the ,,*Seminaire de Prospective*" of CNES by a French/Italian/German/UK – Consortium

Simbol-X capabilities

- Energy range 0.5 to 80 keV
- "XMM type" sensitivity up to 50 keV
- i.e. sensitivity more than 100 times better than IBIS on INTEGRAL with a "CCD type" spectral resolution up to ~ 20 keV
- a spectro-imaging capability with a < 30 arcsec angular resolution (HPD) on the full energy range

Observatories and mission timelines

Joined ESA/JAXA mission

- ESA's potential follow-on mission to XMM
- Challenging satellite design with X-ray mirrors flying 35-50m ahead of the detector
- Effective area: $5 \text{ m}^2 \otimes 1 \text{ keV}$ ($1 \text{ m}^2 \otimes 6.5 \text{ keV}$)
- Limiting sensitivity: $\sim 4 \times 10^{-18}$ erg cm⁻² s⁻¹
- Energy range: 0.1 40 keV (80 keV goal)
- FOV: 7' x 7' and 1.7' x 1.7'
- Angular resolution: < 5" (2" goal) HPD
- Spectral resolution: 1 eV @ 0.5 keV
 6 eV @ 6 keV
- Temporal resolution: < 5ms (< 5 us)
- Possible launch date after ~2020+

- Increasing the sensitivity requires the development of novel lightweight compact X-ray optics!
- $\rightarrow\,$ The mass of the mirror becomes a major driver in the mission design
- → Future applications have to archive good angular resolution and low mass while maintaining collecting area!

XEUS - New High Precision Pore Optics (ESA patent 499)

XMM-Newton nickel optics: 15" 900 kg m⁻² MCP/HPO optics: 30" 25 kg m⁻² XMM-Newton size: 4 kg

For the conical approximation to the Wolter-I geometry two reflections are required, and therefore also two MCPs in tandem

XEUS - Production of small Silicon HPO modules

Micromachining of Silicon

(ESA patent 499)

XEUS - New High Precision Pore Optics

(ESA patent 499)

MSC is launched as a sort of "canister" which unfolds later

XEUS - Current Mission Concept

- Direct injection of MSC to L2 with a modest rocket such as a Soyuz-Fregat or Ariane-5 to provide 5 m² mirror area.
- 2. At L2 the DSC can be much smaller due to less fuel need and simpler orbit maneuvering

XEUS Instruments/Focal Plane

Wide field semiconductor and Narrow field cryogenic instruments:

Parameter	WFI	NFI1	NFI2	
Detector type	Active Pixel DEPFET	STJ	TES	
Energy range	0.1 – 30 keV	0.05 - 3 keV	0.5 – 7 keV	
Field Coverage	5 arcmin	30 arcsec	32 arcsec	
Number of pixels	1000 x 1000	48 x 48	32 x 32	
Pixel size (arcsec)	0.3	0.6	1	
Energy resolution	50 ev @ 1 keV	2 ev @ 1 keV	2 ev @ 1 keV	
Energy resolution	100 ev @ 8 keV	5 ev @ 8 keV	5 ev @ 8 keV	
Time resolution	< 5 ms	< 5 us	< 5 us	
Count rate limit	200 – 1000 Hz/PSF	25000 Hz/PSF	250 Hz/PSF	

XEUS: proposed ancillary instrumentation

fast timing experiment

based on a silicon drift detector to provide spectrally-resolved counting information for point-sources at 10⁶ cts/s

hard X-ray detector

co-axially aligned with the on-axis imaging instrument. Proposed to be implemented as compound semiconductor detector pixel-array located behind the WFI

enhanced wide-field instrument

using an array of more conventional CCDs located around the onaxis imager

polarization detector

comprising a micro-well gas electron multiplier to sense the photoelectric polarization effect

Summary of rot. powered Pulsars detected at X

XEUS: Simulation of pulsar spectra

Deepest XMM observation on single target: 256 ksec

1E 1207-52 in G296.5+10.0 d= 2.2 kpc age ~ 7 kyr P = 424 ms

Zavlin et al. 2001 Mereghetti et al 2002 De Luca et al. 2004

XEUS: Simulation of spectra: 1E1207

XEUS: Simulation of spectra: B0823+26

XEUS WFI (thin filter, 10 ksec)

40 ksec XMM-Newton obs. of PSR B0823+26

(Becker, Weisskopf, Tennant et al. 2004)

THANK YOU VERY MUCH