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Abstract

The presence of orthogonal polarisations in observations
of pulsar radio emission is commonly associated with an
incoherent superposition of the natural wave modes of
the source plasma. The inhomogeneous nature of this
plasma is invoked firstly to effect the coupling of energy
from one mode, initially dominant during wave growth, into
two modes, and, secondly, to separate the paths of the two
modes as they propagate out of the magnetosphere. Gra-
dients perpendicular to the local magnetic field direction in
the streaming velocity of the e+ − e− plasma are explored
as a mechanism for these effects.

1. Introduction

IN the linear theory of wave propagation in a medium,
waves may grow due to the presence of complex solu-

tions to the dispersion equation or dissipation of kinetic en-
ergy through resonant interactions with the plasma parti-
cles. The wave amplitude grows as exp(Γs), where s is
the distance along the propagation direction and there is
a growth rate Γ associated with each mode. In practice
the mode with the highest growth rate will come to domi-
nate the emission after a few growth lengths 1/Γ. Thus, in
the case of pulsars where the radio emission is thought to
originate through some instability in the magnetised plasma
surrounding a rotating neutron star, a single dominant mode
is expected to determine the polarisation of the resultant ra-
diation. Observations show that this is clearly not the case
and so a mechanism is required to transfer energy between
the modes.
In an inhomogeneous plasma the polarisation properties of
the natural modes may vary along the propagation path,
and if this occurs in a distance < O(1/∆k), where ∆k is the
difference in propagation constants for the two modes, then
they are in some sense poorly defined and they no longer
propagate independently. Waves in a particular mode may
also encounter regions where they become evanescent and
will be reflected by such layers. As this occurs under differ-
ent conditions for different modes it can seperate their paths
of propagation significantly.
The production of e+ − e− pairs in neutron star magneto-
spheres is thought to occur through decay of γ-rays on the
super-strong magnetic field near the stellar surface. Par-
ticles are essentially restricted to motion along field lines
and so there is little interaction in the direction transverse to
this. Thus, the nature of the plasma produced is expected
to vary significantly across the open field line region due
to variations in the electrodynamics of the pair-production
process, and gradients in the bulk plasma velocity are one
example of this.

2. Governing Equations

• This treatment of wave propagation follows closely that
used in the study of radio waves in the ionosphere, with
the main difference being the inclusion of the streaming
motion of the particles and the presence of both electrons
and positrons.

• The e+ − e− plasma is modelled as a cold, magnetised,
two component fluid, and is assumed stratified in the z
direction with the magnetic field lying in the x direction.
The governing equations of the problem are an equation
of motion for each species,( ∂

∂t
+ v± · ∇

)
(γv±) = ± e

m
(E + v± ×B), (1)

a corresponding continuity equation,

∂n±
∂t

+∇ · (n±v±) = 0, (2)

and the Maxwell equations,

∇× E = −∂B

∂t
, (3)

∇×B =
1

c2

∂E

∂t
+ µ0e

∑
s=±

snsvs, (4)

where v is the particle velocity and n is the particle num-
ber density.

• After Fourier transforming in time and the x and y co-
ordinates, the linearised set of the original governing
equations reduces to four equations for the four non-
redundant variables, which are the electric and magnetic
field components Ex, Ey, Bx, and By. Defining a vector

e = (Ey, cBx, Ex, cBy)T , where c is the speed of light, the
problem may be cast in matrix form

e′ = Te, (5)

where the prime denotes differentiation w.r.t. the variable
ζ = (ω/c)z, ω being the wave frequency. The non-zero
components of the 4× 4 matrix T are

T12 = −i,

T21 = i

[
A2 − 1 +

BX

γ(B2 − Y 2)

B(B2 − Y 2)−X(ηX − Y 2)

B2 − Y 2 − ηXB

]
,

T24 = − XY (β − A)

B2 − Y 2 − ηXB
,

T31 =
ABXY

γ(B2 − Y 2 − ηXB)
, (6)

T34 = −i

[
A2 − 1− ηABX(β − A)

B2 − Y 2 − ηXB

]
,

T42 = − XY β

B2 − Y 2 − ηX
γ

,

T43 = i

[
1− X

γB2

(
1− ηγβ(β − A)(X − γB2)

B2 − Y 2 − ηX
γ

)]
.

•With ωp being the plasma frequency, Ωe the electron cy-
clotron frequency, and γ and β being the Lorentz factor
and velocity respectively associated with the streaming
motion of the plasma, we have the definitions A = kxc/ω,
B = γ(1 − Aβ), X = ω2

p/ω
2, and Y = Ωe/ω. η is the

average charge of the particles.

• This form is valid so long as the length scale over which
the plasma parameters vary is much longer than the vac-
uum wavelength, so that derivatives in these quantities
may be neglected.

• To determinie the parameters in the problem the propa-
gation region is chosen to lie on the axis of a dipole mag-
netic field aligned with the rotation axis of the neutron
star. The background particle number density is taken as
the Goldreich-Julian number density multiplied by a mul-
tiplicity factor M = 1/η. The neutron star has a rotational
period of 1s and a magnetic field strength of 108T at the
stellar surface (radius r = R).

•Wave propagation in the strong field regions of neutron
star magnetospheres is often investigated in the limit in
which B →∞, however the inclusion of a finite magnetic
field strength is essential to achieve mode coupling.

3. Dispersion Characteristics

• The eigenvalues q of the matrix T correspond to the
modes of a locally homogeneous medium and are given
by

q2 =
1

2
(T12T21 + T24T42 + T34T43)

±1

2

[
(T12T21 + T24T42 + T34T43)

2 (7)

−4T12T43(T21T34 − T24T31)
]1/2

.

• Solutions are in general complex, and correspond to
pairs of the x- and o-modes which propagate/decay in op-
posite directions. A particular mode will propagate only
where the associated eigenvalue is pure imaginary.

•Of particular interest are points where the eigenvalues
of two of the modes become degenerate, as strong cou-
pling will occur between them in the surrounding regions.
When the term in the square brackets in (7) is zero the
codirectional x- and o-mode solutions become pairwise
degenerate (see Figure 1).
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Figure 1: Grey-scale plots of the Log of the absolute value
of the term in square brackets in (7). The black region de-
notes where this term → 0, i.e. where strong coupling oc-
curs. Above this the eigenvalues are complex (both real and
imaginary parts) and below they are real or pure imaginary.
r = 10R in (a) and r = 100R in (b). η = 10−3 in both.

• Inspection of (6) and (7) implies that satisfaction of the
condition γ3(1 − Aβ)2 = X leads to the degeneracy of
the forward and backward propagating o-mode solutions
(see Figure 2). Strong reflections will thus occur even if
the waves do not reach a layer where they are evanes-
cent.
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Figure 2: Grey-scale plots of the Log of the absolute value
of γ3(1 − Aβ)2 − X. The black region denotes where this
term → 0 and thus where the o-mode is strongly reflected.
To the left of this the eigenvalues are pure imaginary and
to the right they are real. r = 10R and η = 1 in (a), and
r = 100R and η = 10−3 in (b).

4. Reflections Off Sharp Boundaries

• If the transition between two homogeneous regions of
plasma occurs over a distance � ω/c then one may sim-
ply enforce continuity of the transverse (to z) field com-
ponents across the sharp boundary.

• To demonstrate the strong reflection of the o-mode at
near-parallel propagation to the magnetic field direction
one may calculate transmission and reflection coeffi-
cients by normalising the eigenvectors to a given value of
the z-component of the time-averaged Poynting vector.
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Figure 3: Reflection (green) and transmission (red) coeffi-
cients for the o-mode incident upon a shear in bulk plasma
velocity. The region of the incident wave has γ = 600 which
bounds plasma with γ = 800. r = 100R and η = 10−3. The
eigenvalues are imaginary in both regions. A0 is the degen-
eracy point.

• If an o-mode wave is propagating sufficiently close to
the magnetic field it requires only a small variation in the
Lorentz factor of the streaming plasma to confine it to a
narrow slab. The o-mode will then be ‘ducted’ along the
magnetic field lines, while the x-mode propagates unper-
turbed.

5. Conclusions

• Variations in bulk plasma velocity perpendicular to the
magnetic field direction can strongly affect the polarisa-
tion properties of the natural wave modes.

•Coupling between the x- and o-modes can occur at and
around points where they become degenerate.

•Ducting of the o-mode along magnetic field lines is pos-
sible due to strong reflections off boundaries between
plasma regions with different streaming velocities at near
parallel propagation.
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