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Main Results
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FIGURE 2: Structure of the pulsar magnetosphere: left – for x0 = 0.9 and such distribution of angular velocity of open field lines
β(ψ) = β̄(ψ), that the current density in the polar cap of pulsar is nearly constant. right – for x0 = .9 and β ≡ 1. The magnetic field lines
are shown by thin black lines for the same values of ψ in both figures. The last open magnetic field line is shown by the thick red line. The
Light Cylinder is shown by the dot-dashed line.
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FIGURE 3: Poloidal current density in the polar cap of pulsar normalized to the Goldreich-Julian current density for different values of x0:
left – for variable β(ψ) = β̄(ψ) producing nearly constant current density, jpc ' ̄. right – for β ≡ 1. Michel current density is shown by
the dashed line.
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FIGURE 4: From left to right: (1) – angular velocity of rotation β̄ of the open field lines for different x0 as a function of the colatitude in
the polar cap of pulsar. β̄(ψ) shown here correspond to the current densities shown in Fig. 3 (left); (2) – the value of normalized magnetic
flux function corresponding to the last open magnetic field line as function of x0: solid line – for β(ψ) = β̄(ψ) shown in panel (1), dashed
line – for β(ψ) ≡ 1, dotted line – for β ≡ min(β̄(ψ)); (3) – energy losses of pulsar with almost constant current density in the polar cap,
normalized to the magnetodipolar energy losses as a function of x0;

• For β(ψ) ≡ 1 in configurations with x0 > 0.6 there is a volume return current flowing along the open magnetic field lines, which makes
however only a small part of the whole return current. The current density (in units of jGJ) close to the polar cap boundary increases with
increasing of x0. The current density does not exceed the corresponding Michel current density.

• Current density can be made nearly constant over the polar cap of pulsar (jpc ' ̄ ≡ const) by adjusting angular velocity of open field
lines (β(ψ) ≡ β̄(ψ)), Fig. 3 (left).

• ̄ increases with increasing of x0. However, ̄ < jGJ for any x0, see Fig. 3 (left).

•Deviation of β̄(ψ) from 1 decreases with decreasing of x0, i.e. in configurations with larger x0 the corresponding potential drop in the
polar cap must be larger, Fig. 4 [1]

• Configurations with constant and variable β’s ave similar even if the corresponding current density distributions are significantly differ-
ent, see Fig. 2.

•Values of ψ corresponding to the last open magnetic field line for configurations with β ≡ 1 and for configurations with β(ψ) ≡ β̄(ψ)
ave very close to each other for any x0, Fig. 4 [2].

• Energy losses of the pulsar increase with decreasing of x0, Fig. 4 [3].

• Each solution has been checked for applicability of the force-free condition E < B. In none of them this condition is violated.

• The total energy of the electromagnetic field in the magnetosphere Ξ =
∫
V ol(B

2 + E2)/(8π) dV decreases with increasing of x0.

Conclusions

• Electromagnetic cascades in the polar cap of pulsar should be non-stationary.

• The size of the closed field line zone should be less than the Light Cylinder radius, x0 < 1

• The magnetosphere of pulsar should evolve with time, i.e the relative size (in RLC) of the closed field line zone should change. This will
result in pulsar breaking index different from 3.

• The configuration of the magnetosphere is mostly determined by the size of the corotating region x0.

Pulsar Equation

Structure of the force-free magnetosphere of an aligned rotator can be de-
scribed by a set of solutions of the so-called pulsar equation, which in cylin-
drical coordinates (x, φ, z) has the form

(β2x2−1)(∂xxψ+∂zzψ)+
β2x2 + 1

x
∂xψ−S

dS

dψ
+x2β

dβ

dψ
(∇ψ)2 = 0 . (1)

ψ and S are normalized magnetic flux and poloidal current correspond-
ingly. Magnetic field is expressed through these functions as

B =
µ

R3
LC

(∇ψ × eφ
x

+
4π

c

S

x
eφ

)
. (2)

where µ is the magnetic moment of the neutron star (NS). All coordinates
are normalized to Rcor

LC ≡ c/Ω, the radius of the Light Cylinder for co-
rotating plasma. β ≡ ΩF/Ω - is the ratio of the angular velocity of mag-
netic field lines ΩF normalized to the angular velocity of the neutron star Ω.
Angular velocity of rotation of magnetic field lines is given by

ΩF = Ω(1 +
∂V

∂ψ
) . (3)

where V is the non-corotational electric potential. Angular velocity of open
magnetic field lines differs from the the angular velocity of the NS due to
existence of an accelerating electric field in the polar cap of pulsar.

At the Light Cylinder (LC), i.e. in points with coordinates (xLC, z) such
that

xLC(z) · β [ψ(xLC, z)] = 1 (4)

the pulsar equation has singularity and it reduces to

2β ∂xψ +
1

β

dβ

dψ
(∇ψ)2 = S

dS

dψ
. (5)

Each smooth solution of eq. (1) must satisfy eq. (5) at LC. This is possible
only if function S satisfies eq. (5).

Force-free-magnetosphere of an aligned rotator has two physical degrees
of freedom: i) the size of the closed field line zone, and ii) the distribution
of angular velocity of open magnetic field lines β(ψ).

β(ψ) is determined by the local electrodynamics of the polar cap.

The current density distribution in the pulsar magnetosphere for a given
size of the closed field line zone x0 and for a given angular velocity distri-
bution β(ψ) is a fixed function. It is obtained in course of solving of the
pulsar equation, from eq. (5).

Solution method

We assume Y-configuration of the magnetosphere, i.e. the existence of
an equatorial current sheet with the return current. Equation (1) is solved
numerically in a domain xNS ≤ x ≤ xmax, zNS ≤ z ≤ zmax
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FIGURE 1: Calculation domain and boundary conditions

Boundary conditions are shown in Fig. 1. Equation (1) is solved using
multigrid FAS scheme. As a smoother we used Gauss-Seidel scheme.

At each iteration step we find position of the LC by solving numerically the
equation (4) by the Newton method for each z-axis grid point zj, and find
poloidal current function SS ′ ≡ S (dS/dψ) from the equation (5). Then
we use piece-polynomial interpolation for SS ′ and calculate SS′(x, z) =
SS′ [ψ(x, z)] in each domain point.

The return current flowing along the last closed magnetic field line is sme-
ared over the region [ψ0−dψ, ψ0]. β in the current sheet smoothly changes
to the value β = 1 in the closed field line zone.

Abstract We explore properties of stationary force-free magnetosphere of an aligned rotator in the most general case, taking into account differential rotation of the open magnetic
field lines. We conclude, that most probably the electromagnetic cascades in the polar cap of pulsar are non-stationary and the size of the corotating region is less that the radius of
the Light Cylinder.
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