PSR J1119-6127 and the X-ray Emission from High Magnetic Field Radio Pulsars

> Marjorie Gonzalez (McGill University) NSs and PSRs: ~40 years after discovery Bad Honnef, May 18, 2006

Collaborators: V. Kaspi (McGill), F. Camilo (Columbia), B. Gaensler (Harvard), M. J. Pivovaroff (LLNL)

Overview

Rotation-Powered Pulsars with High B Field

- Relation to magnetars
- X-ray Properties
- The case of PSR J1119-6127
- Emission Models
- Implications

High B Pulsars vs Magnetars

- Magnetars: emission properties powered by high B field.
- Rotation-powered pulsars with high B field:
 - Overlapping spin characteristics
 - Expect "transition objects"

	High B Field Pulsars	Magnetars
Period, P	100's ms - few sec	5-12 sec
Magnetic Field, B	~10 ¹³ -10 ¹⁴ G	(0.6-7) x10 ¹⁴ G
L _X	<< Ē	>> Ē
X-ray spectrum	Γ _{pl} ~1-2, T _{bb} < 2 MK	Г _{рI} ~ 3-4, Т _{bb} ~ 5 МК

X-ray Properties

 Many rotation-powered pulsars with inferred magnetic fields in the ~10¹³-10¹⁴ G range. E.g.,

PSR	J1847-	J1718-	J1814-	J1846-	B0154+61	B1509-58
	,013Q	3718	1744	0258		
P, sec	6.7	3.4	4	0.32	2.35	0.15
B, 10 ¹³ G	9.4	7.4	5.5	4.8	2.1	1.5
τ _c , kyr	83	34	85	0.72	197	1.7
É, ergs/s	1.7x10 ³²	1.5x10 ³³	4.7x10 ³²	8x10 ³⁶	5.7x10 ³²	1.8x10 ³⁷
X-rays?	Х	Yes,	Х	Yes,	X	Yes, non-
		thermal		non-		thermal
				thermal		
Ref.	McLaugh-	Kaspi & /	\Pivovaroff	Helfand	Gonzalez	Gaensler
	\lin et al/	McLaugh/	tet al.	∖etal. /	∖etal. /	et al. /
	(2003)	lin (2005)	\(2000)/	(2003)	(2004)	(2002)

X-ray Properties

- Few X-ray detections:
 - Young (<10⁴ yrs), high E (>10³⁶ ergs/s): show nonthermal emission and bright PWNe (PSRs J1846-0258 and B1509-58)

J1846-0258 (Helfand et al 2003) B1509-58 (Gaensler et al 2002)

 Older (>10⁵ yrs), lower E (<10³³ ergs/s): undetected, except for the faint thermal emission from PSR J1718-3718

 \rightarrow No magnetar-like radiative properties

\rightarrow The case of PSR J1119-6127:

- P = 0.41 sec
- B = 4.1×10^{13} G
- $\dot{E} = 2.3 \times 10^{36} \text{ ergs/s}$
- $\tau_c = 1,700 \text{ yrs}$
- n = 2.91± 0.05

- Located at the center of SNR G292.2-0.5 (D~8 kpc)
- Faint, arc-second scale PWN resolved with Chandra(Gonzalez & Safi-Harb 2004)
 - Extended emission mainly above 2 keV

- Unusual X-ray pulse profile:
 - Single peak, although only coarse determination of pulse profile was possible
 - Very high pulsed fraction of ~74% ± 14%
 - Only detect pulsations at low energies

• Thermal spectrum:

	BB	Atm.
Radius /	3.4 km /	27 km /
Distance	8.4 kpc	8.4 kpc
Temp.	2.4 MK	0.9 MK

Unusual pulsations arise from thermal emission

- Thermal emission:
 - Radio pulsar with smallest characteristic age with detected thermal emission
 - Not expected from reheated polar caps:

	Observed	Expected
L _x /Ė	~0.001	<10 ⁻⁵

Cooling emission?

Minimal non-superfluid cooling model (red line) and superfluid cooling models (solid lines)

- Thermal emission:
 - High temperature (higher than predicted from cooling models)
 - Smaller emitting area than total surface of a NS
 - Very high pulsed fraction
 - Small fraction of available E
 - → Not magnetar-like emission, but unusual for thermal origin: related to high inferred B field?

Emission Models

- Recent work on emission from highly magnetized NSs (Geppert et al 2004, 2005; Perez-Azorin et al. 2006):
 - Anisotropic temperature distribution: high temperature and small emitting area

- But, derived pulsed fractions much lower than in PSR J1119-6127 and some magnetars
 - Take beaming into account?

Further Issues

- Could these models be applied to explain the emission from PSR J1119-6127?
 - How is this emission related to those of magnetars?
 - Why no other high-B field pulsar shows this? Especially PSR J1846-0258
 - Why does PSR 1852+0040 also show a high pulsed fraction and temperature but has an estimated B < 3x10¹² G (Gotthelf et al 2005)?

Summary

- Unusual thermal emission detected from the young, high-B field pulsar J1119-6127:
 - Radio pulsar with smallest characteristic age with detected thermal emission.
 - Thermal emission: high temperature, small emitting area, very high pulsed fraction.
 - Characteristics related to high-B field effects?
 - Anisotropic temperature distribution due to high B field
 - Still need to account for pulse profile characteristics

Summary

→ Why is it so special among high-B field rotationpowered pulsars?* Or is it?

 → Why no magnetar-like emission from these sources?
→ A broader study of the population and further theoretical work are needed...

 \rightarrow Related works at this meeting:

• Janssen (P1) and Vranwsevic (P9): radio observations of several high B field radio pulsars; no clear differences from general population but very faint sources.

• Melikidze (P45): polar cap emission possible?

* More observations to constrain (and confirm) properties would be nice