Recent Observations of Pulsar Wind Nebulae in EGRET Error Boxes

Mallory Roberts Eureka Scientific, Inc. 18 May, 2006 Bad Honnef

with Rene Breton, Crystal Brogan, Eric Gotthelf, Jules Halpern, Scott Ransom, and many others

Young EGRET Pulsars with Torii+Jets

Crab

NASA/CXC/SAO

• E=4.6x10³⁸erg/s D~2 kpc

Age=952 yr

• E=6.9x10³⁶erg/s D~0.3 kpc

Pavlov et al. 2003

Age~11,000 yr

PSR B1706-44

Romani 2004

• E=3.4x10³⁶erg/s D~2 kpc

Age~17,000 yr

Vela

Youngish EGRET Pulsars with PWN PSR B1951+32 PSR B1046-58

• E=3.7x10³⁶erg/s D~3 kpc Age~100,000 yr • E=2.0x10³⁶erg/s D~3 kpc Age~20,000 yr

Old EGRET Pulsars PSR B1055-52

 \dot{E} =3.0x10³⁴erg/s D~0.7 kpc Age~500,000 yr

ESA **Ě**=3.2x10³⁴erg/s $D^{\sim}0.4$ kpc Age~350,000 yr

Discrete EGRET Sources

Unidentified Sources E > IGeV

Lamb & Macomb 1997

Variability of Potential ASCA X-ray Counterparts

Roberts, Romani & Kawai 2001

Pulsars as Variable Low-Latitude Sources?

• Magnetospheric emission (i.e. Pulsations) is steady on timescales >> pulse period

• Population of variable (timescale of months) low-latitude EGRET sources in inner Galaxy (Maclaughlin et al. 1996, Torres et al. 2001, Nolan et al. 2003)

• Log N-log S of plane sources differs from pulsars (Bhattacharya et al. 2004), but similar to molecular clouds

 BUT: Majority of energy goes into relativistic wind, and pulsar wind nebulae do vary
 What about nebular emission from pulsars moving through molecular clouds?

GeV J1809-2327: A GeV Emitting PWN?

• Most prominent source in small GeV error box

• Most significant variability (V₁₂=3.93, Nolan et al. 2003) of any low-latitude, non-AGN EGRET source

Roberts, Romani & Kawai 2001

A PWN Interacting with a Molecular Cloud?

Taz: A GeV Emitting RPWN?

 Radio Nebula with spectrum and polarization of PWN • Short Chandra image resolved point source with trail Southern part of ASCA "nebula" resolved into stellar cluster

Braje et al. 2002, Roberts et al. in prep

Radio Continuum

Polarized Radio Non-Thermal X-Ray

GeV J1809-2328 from Cloud Interaction?

Mid-Infrared 8.3µ

Non-Thermal X-rays

20cm radio 0.5-10 keV X-rays

Taz Cloud Interaction?

Mid-Infrared 8.3µ 0.5-2.5 keV X-rays 2.5-8 keV X-rays

Taz is classic RPWN!

20cm radio 2.5-8 keV X-rays

-2.43e+00

zscale=1.963e-02 301 x 301 [0.000,1.200], [0.000,1.200]

3.69e+00

I=18° Sources

Complex region with at least 2 EGRET sources Region of bright unidentified, variable Comptel source. • GeV J1825-1310 (3EG J1826-1302) second highest V_{12} =3.22 20 and 90cm imaging resolve at least 4 SNR, 2 of them new, as well as many molecular clouds and some other structures

Brogan et al. in prep.

GeV J1825-1310

GeV J1825-1310

The Eel X-ray RPWN in GeV J1825-1310

Eel radio RPWN?

nfrared counterpart

Eel radio RPWN?

Unnamed HESS Source (see Poster by Lemiere et al.)?

And last but not least, the Kookaburra

Mid-Infrared 8.3µ Radio Continuum Non-Thermal X-rays

PSR J1420-6048

Energetic pulsar in upper wing of Kookaburra
Hint of X-ray Torus
Is wing radio PWN?
Polarized emission
HESS SOURCE!

20cm Radio

Polarized Radio

Hard X-ray

But There is Also the Rabbit!

13 cm radio (Roberts et al. 1999)

Lower Wing Containing Rabbit ALSO A HESS SOURCE!

20cm Radio

Polarized Radio

Hard X-ray

Chandra I-7 keV Rabbit

Chopping off Head of Rabbit?

Mid-IR emission bounds nonthermal X-rays

Are the ears just part of the thermal shell?

mid-Infrared 8.3 µ Radio non-thermal X-Ray

Searching for γ -ray pulsars out of the plane

• Nearby, middle-aged pulsars

• Millisecond pulsars in Galactic Halo?

Millisecond Pulsars?

PSR J0218+4232

MSPs can have spin-down
energies and magnetospheric potentials similar to young pulsars

• They have a mid-latitude distribution similar to the EGRET unidentified sources

• There was one possible detection with EGRET of an MSP.

Survey Results (Crawford et al. 2006)

PSR J1614-2230

Ransom et al. in prep

P_s = **3.15** ms

 $\dot{E} = 1.2 \times 10^{34} \text{ ergs/s} \tilde{L}_{\gamma} (d/1.3 \text{ kpc})^2$

 $B = 1.8 \times 10^8 G$

τ=5.2X10⁹ yr

d ~ 1.3 kpc

P_{orb} = **8.7** days

ecc = 1.4×10^{-6} HEAVY WHITE DWARF COMPAN $M_c > 0.4 M_{sun}$

Orbital Period / Companion Mass relationship for P < 8ms pulsars in Galactic Field

XMM-Newton Observation of PSR J1614-2230

PSR J1614-2230 Ransom et al. in prep

- Soft X-ray point source with low absorption
- Harder, probably extended emission
- X-ray efficiency ~0.1%
- preliminary proper motion, assuming DM distance,V₁=780±350 km/s (twice tempo errors)

Summary

• Three probably variable EGRET sources are probably PWN

• XMM-Newton observation confirms RPWN morphology of Taz but suggests it may be behind Lynds 227

• Eel may be confirmed RPWN by HESS

• HESS sources in Kookabura confirm PSR J1420-6048 and Rabbit are associated with wings. K3 probably PWN offset by SNR reverse shock, Rabbit less clear

• PSR J1614-2230 may be EGRET source. 3rd MSP RPWN? Evolution unclear.