GAMMA-RAY EMISSION OF PULSARS: STATUS AND MULTI-WAVELENGTH CONTEXT

Gottfried Kanbach Max-Planck-Institut für extraterrestrische Physik Garching, Germany gok@mpe.mpg.de

363rd Heraeus-Seminar

GLAST simulated all-sky map (>1GeV) after ~55 days of exposure: EGRET Pulsars

Credit: M. Razzano

Presently known pulsars

Table of detections

High-Energy Pulsars: Multiwavelength Detections												
PSR	P (ms)	\dot{E}/d^2 rank	radio	opt	X _{low}	X _{hi}	$\gamma_{\rm low}$	$\gamma_{ m hi}$				
high confidence γ -ray detections												
B0531+21 (Crab)	33.4	1	Р	Р	Р	Р	Р	Р				
B0833-45 (Vela)	89.3	2	Р	Р	Р	Р	Р	Р				
J0633+1746 (Geminga)	237.1	3	P ?	Р	Р	Р	?	Р				
B1706-44	102.5	4	Р	?	D			Р				
B1509-58	150.7	5	Р	D	Р	Р	Р					
B1951+32	39.5	6	Р		Р		Р	Р				
B1055-52	197.1	33	Р	D	Р		Р	Р				
candidate γ -ray detections												
B0656+14	384.9	18	Р	Р	Р		?	?				
B0355+54	156.4	36	Р		D			?				
B0631+10	287.7	53	Р		D			?				
B0144+59	196.3	120	Р					?				
ms PSR γ-ray detection & candidates												
J0218+4232	2.32	43	Р		Р			Р				
B1821-24	3.05	14	Р		Р			?				
Likely PSR - γ-ray source positional coincidence												
B1046-58	123.7	8	Р		D			D?				
J1105-6107	63.2	21	Р		D			D?				
B1853+01	267.4	27	Р					D?				

P = pulsed detection, P? = low significance pulsation, D = unpulsed detection

 $\frac{\text{Multi}-\lambda \text{ Spectra of } \gamma\text{-ray}}{\text{Pulsars}}$ $\frac{(\text{pulsed emission})}{(\frac{1}{2})^{2}}$

- •Maximum of Emission in the hard X- and γ ray range
- High energy spectral cut-off
- Distinct spectral components

Phase Averaged Pulsar Spectrum (Romani, 1996, ApJ 470, 469) $\tau = 10^{4.5}$ y, B₁₂=3, E_c=3GeV

PSR spectral components (outer gap model)

7

High-altitude slot gap - geometry

Dyks & Rudak 2003, Dyks et al. 2004)

Gamma-Ray Details...

11

Each ,Goldreich-Julian' particle releases ~ 15 ergs of γ -luminosity,

(e.g. in GeV photons this implies 6×10^3 photons/G-J particle)

If the accelerator provides particles of Lorentz factor ~ 10^7 (~10 erg) this implies a radiation efficiency of ~ 100%!

Hardness Ratio (>300 MeV) / (100-300 MeV)

Pulse Components Crab and Geminga

14

Spectra of Components in Crab and Geminga

VELA, PSR B0833-45

Pulse Components Vela

Empirical Fit with 2 asymmetric Lorentzian peaks and a log-normal distribution: P1, P2, IP

Optical Emission

Shearer, 1999

Name	D (kpc)	P (ms)	$\dot{P}_{10^{-14} \text{ s/s}}$	B_S log(G)	B_{LC} log (G)	Opt. Lum μ Crab	Peak Lumin. μ Crab
Crab Vela	$2^{0.5}$	33 89	40 [′] 11	$12.6^{-12.5}$	6.1 4.8	10^{6} 27	10 ⁶ 21
PSR0545-69	49	50	40	12.7	5.7	$1.1\ 10^{6}$	$1.4 10^{5}$
PSR0656+14 PSR0633+17	0.76(T) 0.16	$\frac{385}{237}$	1.2	$12.7 \\ 12.2$	3.0	0.3	0.3

Observations with the SUBARU telescope

Shibanov, et al.,, astro-ph/0511311

Shibanov, et al.,, astro-ph/0511311

Polarization close to pulsar: degree: 8-13% angle ~ 140° (Schmidt&Angel, 79)

The Crab is visible at all phases

Shearer, 2002

Crab single rotation

and

summed lightcurve

Crab Polarization (OPTIMA)

~ Correspondence of Polarization Characteristics (note also striped wind model, Petri and Kirk, 2005)

Peak ratio statistics

Correlation of otical flux and Giant Radio Pulses (Shearer et al., Science, 301, 493, 2003)

363rd Heraeus-Seminar

Conclusions:

High energy emission in young radio pulsars is the dominant radiation process and some details are already detectable in the brightest objects

(GLAST will detect `many` more radio pulsars Where many could be 50-100 depending on model)

Coupling between incoherent high-energy radiations and coherent radio emissions in Crab (rad-opt) and Vela (talk by A. Lommen) start to become visible.

We should be on our way to a comprehensive model of pulsar emissions...