Physics of drifting sub-pulses in radio pulsars

Jan Kuijpers¹, Pui-Kei Fung², David Khechinashvili³

kuijpers@astro.ru.nl

¹Dept. of Astrophysics, IMAPP, Radboud University Nijmegen, The Netherlands ²Royal Netherlands Meteorological Institute, The Netherlands ³Institute of Astronomy, Zielona Góra, Poland

Observations modeled

Drifting sub-pulses

Pulse number

What we have learned from single pulse studies:

- stable rotation of emission carousel around magnetic axis;
- global electric circuit determines emission & mode changes.

Pulsar models

In common: Voltage source, electric + return circuit, pair plasma

$$E_{\parallel}(r_* + r_{pc}) \approx -pcB_* \left(\frac{\Omega_* r_*}{c}\right)^q$$

Various models for pair creation (hatched) on the open field lines:

- a. Deutsch 55 {p,q}={1, 1}; b. RS75 {-2, 1.5}; c. Arons 83 {0.5, 2.5};
- d. Muslimov & Tsygan 92 {1, 2}

Drifting sub-pulses: Models

- Ruderman & Sutherland 1975; Gil et al. 2003: vacuum gap partially screened due to thermoionic emission
- ► Clemens & Rosen 2004: non-radial pulsations of ns; exclusive selection of m = 0, l ~ 500 - 700 spherical mode; link to emission?
- Kazbegi et al. 1991; Gogoberidze et al. 2005: drift wave electric field modulates distribution function or changes emission angle; requires weak B.

RS75; Gil et al. 2003

Vacuum gap

Sparks $E \times B$ drifting

Reduction potential gap

Clemens & Rosen 2004

Wright 2003

Current system: aligned rotator

 $\theta_c=\theta_{pc}(2)^{-0.5}=0.96\theta_n~{\rm cf.Wright!}$ $\theta_n=\theta_{pc}(2/3)^{1.5}$

Electrostatic potential in comoving frame: oblique rotator

Electric potential in comoving frame; oblique rotator

Sketch is for ideal MHD above non-ideal rupture zone at foot-points

Electrostatic potentials for aligned rotator + axial symmetry

Star frame	Rigid rotation	Lab frame	
$- abla \Psi$	$-(\Omega_* \times \mathbf{r}) \times \mathbf{B}$	$=$ $- abla \mathcal{V}$	

Note:

- slippage at foot-points due to parallel electric field,
- 'rupture' of field lines,
- generalized magnetic reconnection,
- dissipative element of electric circuit.

Electrostatic potentials for aligned rotator + axial symmetry

Star frame

Rigid rotation

Lab frame

Above the acceleration region, $E_{\parallel} = 0$ and E due to space charge of beam, not to stellar surface charge!

$$\mathcal{V}_{\parallel}(R) = \int_{1}^{2} E dl \to E_{\perp}(R) = -\frac{\partial}{\partial R} \mathcal{V}_{\parallel}(R)$$

$$\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B} = 0 \to v_{\alpha\phi}^{0} = -\frac{E_{R}^{0}}{B_{0}} + v_{\alpha z}^{0} \frac{B_{\phi}^{\mathsf{S}}}{B_{0}}$$

 $E \times B$ drift modified by magnetic self-field from current-carrying beam: for charge-separated beam $v_{\alpha\phi}^0 = -\frac{E_R^0}{\gamma_{\alpha}^2 B_0}$ Differential rotation: diocotron or electrostatic KH instability rotational shear, slipping stream instability

Non-neutral, cold, relativistic pair plasma, $E_{\parallel} = 0, B$ uniform Beam configuration 1

 $J_z(R) = f(R)\beta_z^0(R)en_{GJ}$ h: charge density excess; f: current density excess factor.

hollow beam

Differential rotation: diocotron or electrostatic KH instability

Beam configuration 2 & 3

core component present

reverse current present

Equilibrium rotational velocities: examples

Unstable (electrostatic) diocotron surface modes: hollow beam Q=0

NEUTRON STARS AND PULSARS – BAD HONNEF – MAY 14 - 19, 2006 – p.16

Applications: PSR 0943+10; PSR 0826-34

PSR	$\alpha(^{\circ})$	$\beta(^{\circ})$	$P_1(\mathbf{S})$	$P_3(P_1)$
B0943+10 (DR01)	11.58	-4.29	1.09	1.87
B0826–34 (Gupta et al. 2004)	1 - 2	1	1.848	0.50
B0826-34 (Esamdin et al. 2005)	0.5	—	1.848	+6, -7

l	$\tau_{\rm circ}(P_1)$	$\widetilde{\omega}$ circ
20	37	0.973
15	7.5	0.833
13	+78, -91	0.99, 1.01

Application: PSR0943+10; unstable modes

Application: PSR0943: l = 20, $\tilde{\omega}_{pat} = 0.973$

R_{1}/R_{3}	R_{2}/R_{3}	Q	Γ
0.65	0.92	0.80	1.8×10^{-2}
0.60	0.92	0.83	3.6×10^{-3}
0.80	0.92	0.60	1.14
0.65	0.86	0.77	7.2×10^{-2}
0.65	0.93	0.81	1.4×10^{-2}

$$h = 19.5, f = 12, I(Q = 0.6) = 1.24I_{GJ}$$

Application: PSR0826: Domain of instability for l = 13Two nested cones!: 4th degree eigen-value eqn.; search *Q*-range for instability at l = 13

Physics of Drifting Sub-pulses NEUTRON STARS AND PULSARS – BAD HONNEF – MAY 14 - 19, 2006 – p.20

Conclusions

- ► Diocotron instability in out-flowing non-neutral, differentially rotating relativistic pair plasma for $k_{\parallel} = 0$;
- Charge-separated flow only has unstable $l \ge \gamma^2$;
- ► However for relativistic hollow $e^- e^+$ beam: unstable l < 40;
- ► Identify *l* with number of sub-beams;
- ▶ pattern speed ω/l with carousel drift speed;
- Diocotron inst. allows for reversal of drift direction!
- Relativistic e⁻ e⁺ beam with GJ charge density does not corotate! super-GJ charge densities required
- ► Diagnostic for charge- and current density on open field lines.

Open questions

- Are there meta-stable geometries between which the electric circuit can switch, and the resulting emission pattern as well? (drift mode changing, nulling)
- ► Where is the 'engine'?
- ► How do the particles know which field lines to select?
- ► How does a pulsar choose, and change its drift mode?
- ► How is the coupling between inner and outer gaps?
- ► Is there coupling between the magnetic poles?
- ► How do millisecond pulsars fit in; why are they neglected?!?
- If the diocotron instability is important to understanding drifting sub-pulses what is its non-linear evolution?

Unstable diocotron modes: hollow beam Q=0.8

Unstable diocotron modes: charge-separated core: $h_1 = 0.1$

Unstable diocotron modes: charge-separated core: $h_1 = 0.9$

