Pulsar Winds

John Kirk

Max-Planck-Institut für Kernphysik Heidelberg, Germany

The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957) and waves (Rees & Gunn 1974).

- Few particles: magnetic dipole radiation? Damping \Rightarrow propagation only for $\omega_{pe} < \Omega$. For Crab: $r > 10^8 r_L$ (e.g., Melatos & Melrose 1996)
- Many particles, MHD wind + shock

- The wind–nebula connection
 - MHD simulation
- Acceleration of the wind
 - Dissipation in shocks/current sheets
- Observation of the wind
 - Optical pulse shapes and polarisation
 - TeV emission binary system PSR B1259 –63
- Acceleration of particles
 - Two mechanisms?

2D relativistic MHD by at least three groups

Komissarov & Lyubarsky 2003; Khangoulian & Bogovalov 2003; Del Zanna et al 2004

Key ingredients:

- relativistic, anisotropic wind (power $\propto \sin^2 \theta$)
- low magnetisation σ (at least near equator)

> – p.4/18

- Radial flow, toroidal magnetic field
- Jet formed downstream of termination shock
- Low value of $\langle \sigma \rangle \sim 0.03$
- No constraints on μ parameter (= $L/\dot{M}c^2$) from the dynamics
- Problems with the inner ring (knots, front/back brightness ratio) — may reflect kinetic effects, such as proposed for the wisps

(Gallant & Arons 1994; Spitkovsky & Arons 2000)

Exact solution for force-free, split monopole (Michel 1973): no collimation, $B_{\phi} \propto \sin \theta / r$ (no closed field lines)

Super-(magneto)sonic flow: $\Gamma \rightarrow \text{constant}$ (Bogovalov 1997)

$$\sigma = \frac{B^2/8\pi}{\Gamma nmc^2}$$
$$= \text{constant}$$

the σ problem

Accelerate the wind:

- Collimation? Not for monopole-like flows (e.g., Bogovalov & Tsinganos 1999) but in principle possible (Vlahakis 2004)
- Dissipation? Oblique rotator (Coroniti 1990) and damping of wave component — how fast?

Problem not really a problem:

- σ still high after the shock (Begelman 1998)?
 Difficult to recover nice pictures...
- the (striped) field dissipates in the termination shock (Lyubarsky 2003) Transition must remain thin

Acceleration of the wind

Dissipation forced by charge starvation $(B \propto 1/r, n \propto 1/r^2)$

Entropy wave or FMS wave (small wavelength approx. $r \gg r_{\rm L}$) Lyubarsky & Kirk 2001; Lyubarsky 2003;

Acceleration of the wind

Dissipation forced by charge starvation $(B \propto 1/r, n \propto 1/r^2)$

Entropy wave or FMS wave (small wavelength approx. $r \gg r_L$) Lyubarsky & Kirk 2001; Lyubarsky 2003; Dissipation \Rightarrow accel. for $\Gamma > \sqrt{\sigma}$

Current sheets

Magnetic pressure balanced by hot plasma in sheet. Key question: What controls the dissipation rate?

Short wavelength approximation (Kirk & Skjæraasen 2003)

Slow dissipation	Tearing-mode	Fast
Coroniti (1980);	Lyubarsky (1996)	Drenkhahn & Spruit (2002)
Michel (1994);		
Lyubarsky & Kirk (2001)		
$\Gamma \propto r^{1/2}$	$\Gamma \propto r^{5/12}$	$\Gamma \propto r^{1/3}$
$\frac{r_{\max}}{L} = \hat{L}^{1/2}$	$\frac{r_{\rm max}}{2} = \mu^{4/5} \hat{L}^{3/10}$	$\frac{r_{\text{max}}}{2} = \mu^{4/5} \hat{L}^{3/10}$
$r_{ m L}$ $-$	$r_{ m L}$ $r_{ m L}$ –	$r_{\rm L}$ $r_{\rm L}$ –

 $\hat{L} = L(\pi^2 e^2/m^2 c^5)$, (= 1.5×10^{22} for Crab)

No consistent conversion mechanism for $\mu > 10\hat{L}^{1/4}$

- Gamma-rays from unshocked wind
 - Targets from companion star: swamped by emission from shocked wind (Ball & Kirk 2000)
 - Targets from neutron star surface: acceleration not permitted for $r < 5r_{\rm L}$ in the Crab

(Aharonian & Bogovalov 2000, 2003)

Gamma-rays from unshocked wind

- Targets from companion star: swamped by emission from shocked wind (Ball & Kirk 2000)
- Targets from neutron star surface: acceleration not permitted for $r < 5r_{\rm L}$ in the Crab

(Aharonian & Bogovalov 2000, 2003)

Optical pulses from unshocked wind if

 $r_{
m emission} < \Gamma^2 r_{
m L}$ (Pétri)

Gamma-rays from unshocked wind

- Targets from companion star: swamped by emission from shocked wind (Ball & Kirk 2000)
- Targets from neutron star surface: acceleration not permitted for $r < 5r_{\rm L}$ in the Crab

(Aharonian & Bogovalov 2000, 2003)

Optical pulses from unshocked wind if

 $r_{
m emission} < \Gamma^2 r_{
m L}$ (Pétri)

TeV emission from shocked wind in PSR B1259 –63

- Hadronic emission (Kawachi et al 2004)
- Inverse Compton model

Unique pulsar/Be star binary

$$\frac{r_{\rm Be}}{r_{\rm p}} = \sqrt{\frac{L_{\rm s.d.}}{\dot{M}v_{\rm wind}c}} \sim 0.7$$

But $L_{\rm s.d.} \gg L_{\rm Be wind}$

< > - p.13/18

• B from P, \dot{P} and $r_{\rm p} \approx r_{\rm Be}$ $\Rightarrow B^2/8\pi \approx 0.1 U_{\rm rad}$

- B from P, \dot{P} and $r_{\rm p} \approx r_{\rm Be}$ $\Rightarrow B^2/8\pi \approx 0.1 U_{\rm rad}$
- Normalisation from ASCA/OSSE points

< > – p.13/18

- B from P, \dot{P} and $r_{\rm p} \approx r_{\rm Be}$ $\Rightarrow B^2/8\pi \approx 0.1 U_{\rm rad}$
- Normalisation from ASCA/OSSE points
- Anistropic IC targets:
 δ-function approx.

- B from P, \dot{P} and $r_{\rm p} \approx r_{\rm Be}$ $\Rightarrow B^2/8\pi \approx 0.1 U_{\rm rad}$
- Normalisation from ASCA/OSSE points
- Anistropic IC targets: δ -function approx.

Observations with H.E.S.S. telescopes

Schlenker et al (2005), Aharonian et al astro-ph/0506280

TeV photon index

$$\frac{\mathrm{d}\ln N}{\mathrm{d}\ln\epsilon} \approx -2.7$$

Electron injection rate

$$\frac{\mathrm{d}\ln Q}{\mathrm{d}\ln\gamma} = -q$$

TeV photon index

$$\frac{\mathrm{d}\ln N}{\mathrm{d}\ln\epsilon} \approx -2.7$$

Electron injection rate

$$\frac{\mathrm{d}\ln Q}{\mathrm{d}\ln\gamma} = -q$$

• Either $q \approx 1.4$ (synchrotron/IC cooling important)

TeV photon index

$$\frac{\mathrm{d}\ln N}{\mathrm{d}\ln\epsilon} \approx -2.7$$

Electron injection rate

$$\frac{\mathrm{d}\ln Q}{\mathrm{d}\ln\gamma} = -q$$

- Either $q \approx 1.4$ (synchrotron/IC cooling important)
- Or $q \approx 2.4$ (adiabatic losses dominate)

TeV photon index

$$\frac{\mathrm{d}\ln N}{\mathrm{d}\ln\epsilon} \approx -2.7$$

Electron injection rate

$$\frac{\mathrm{d}\ln Q}{\mathrm{d}\ln\gamma} = -q$$

- Either $q \approx 1.4$ (synchrotron/IC cooling important)
- Or q ≈ 2.4 (adiabatic losses dominate)
 Connect with acceleration theory?

Crab Nebula

Crab Nebula

 $Q(\gamma) \propto \gamma^{-q}$

< > – p.16/18

 $Q(\gamma) \propto \gamma^{-q}$

< > – p.16/18

 $Q(\gamma) \propto \gamma^{-q}$

< > - p.16/18

 $Q(\gamma) \propto \gamma^{-q}$

< > _ p.16/18

Shock width \approx gyro radius

 $Q(\gamma) \propto \gamma^{-q}$

< > - p.16/18

Shock width \approx gyro radius

resonant cyclotron absorption (p – e⁺)? *Hoshino et al 1992 Amato 2004*

 $Q(\gamma) \propto \gamma^{-q}$

Shock width \approx gyro radius

resonant cyclotron absorption (p – e⁺)? *Hoshino et al 1992 Amato 2004*

 $Q(\gamma) \propto \gamma^{-q}$

1. Radiative losses at periastron

Crab-type injection $dn/d\gamma \propto \gamma^{-1.6}$ at $\gamma < \Gamma_{\rm peak}$

- Adiabatic loss timescale > 15D/c
- 10% efficiency
- $\Gamma_{\rm wind} \approx 6 \times 10^4$

1. Radiative losses at periastron

Crab-type injection $dn/d\gamma \propto \gamma^{-1.6}$ at $\gamma < \Gamma_{\rm peak}$

- Adiabatic loss timescale > 15D/c
- 10% efficiency
- $\Gamma_{\rm wind} \approx 6 \times 10^4$

2. Adiabatic losses at periastron

Crab-type injection $dn/d\gamma \propto \gamma^{-2.2}$ at $\gamma > \Gamma_{\rm peak}$

- Adiabatic loss timescale < 0.5D/c
- high efficiency (~ 100%)
- $\Gamma_{\rm wind} \approx 3 \times 10^4$

2. Adiabatic losses at periastron

Crab-type injection $dn/d\gamma \propto \gamma^{-2.2}$ at $\gamma > \Gamma_{\rm peak}$

- Adiabatic loss timescale < 0.5D/c
- high efficiency (~ 100%)
- $\Gamma_{\rm wind} \approx 3 \times 10^4$

Acceleration of the wind

- Acceleration of the wind
 - Low σ wind in Crab

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?
 - Optical polarisation studies, more observations

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?
 - Optical polarisation studies, more observations
- Acceleration of the electrons

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?
 - Optical polarisation studies, more observations
- Acceleration of the electrons
 - 10 TeV electrons already at $r = 10^3 r_{\rm L}$

- p.18/18

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?
 - Optical polarisation studies, more observations
- Acceleration of the electrons
 - 10 TeV electrons already at $r = 10^3 r_{\rm L}$
 - How?

– p.18/18

- Acceleration of the wind
 - Low σ wind in Crab
 - How, where?
 - Optical polarisation studies, more observations
- Acceleration of the electrons
 - 10 TeV electrons already at $r = 10^3 r_{\rm L}$
 - How?
 - more theory