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A unique lab for relativistic plasma physics 
and tests of general relativity

The double pulsar system:
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The double pulsarThe double pulsar
PSR J0737-3039 discovered in April 2003 at Parkes in

high-latitude survey (Burgay et al. 2006) : 
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The first double pulsar system

• A young 2.77-s pulsar in a 2.4-hr orbit with an old  22-ms pulsar.
• Orbit size ~ Sun,  with orbital velocities of 1 Million km/h!
• Ideal lab for gravitational physics and understanding pulsars.

Burgay et al. (2003), Lyne et al. (2004)
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Birth & Rebirth in the double pulsar

1. First pulsar is born
in Supernova explosion

2. First pulsar is spun up
by mass transfer from
companion

3. Second pulsar is born
in Supernova explosion

Dramatic confirmation of evolutionary theories!



The life of pulsars

AA

BB
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• An energetic pulsar wind from A interacts with B
• The emission from B is affected
• B is only visible for short parts of the orbit!
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Orbital modulation of “B” emission

Two bright intervals near inferior conjunction:

Effelsberg 4.85 GHz

1.4 GHz



O
rb

it
al
 p

ha
se

 →

weak

Direct modulation of B’s emission by A

McLaughlin et al. (2004a)

strong



Huge precession of orbit!
Orbit precesses by 17 deg/yr!

• Measured within a few days of observations!
• One full revolution in about 20 years!

(compared to 3 Million years for Mercury)

Remember Mercury:
yrdeg/00012.0=ω�



Orbit is shrinking by 7mm per day!
• Change in orbital period due shrinking orbit
• Neutron stars will collide in 85 Million years due to 

gravitational wave emission! 

• Discovery boosts expected LIGO detection
rates by almost an order of magnitude…!



Pulsar clock slows down near companion!
Clocks are running slower in deep gravitational fields 

Pulsars’ separation is 
changing during orbit:

Pulsars are running slower 
and faster during orbit
by about 380 microseconds!
(grav.redshift + 2nd order Doppler)



Space-time is curved near pulsarSpace-time is curved near pulsar

Pulses of A are delayed when propagating 
through curved space-time near B:
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Space-time is curved near pulsarSpace-time is curved near pulsar

Pulses of A are delayed when propagating 
through curved space-time near B:
Pulses of A are delayed when propagating 
through curved space-time near B:
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System is seen edge-on!

i=88.7 deg



Space-time is curved near pulsarSpace-time is curved near pulsar

Also, eclipses of A:Also, eclipses of A:
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← At superior conjunction
lasting for ~27 sec

Eclipses of A

Lyne et al. (2004)

System is seen edge-on!

A B

To Earth

30,000km

McLaughlin et al. (2004)



← At superior conjunction
lasting for ~27 sec

Eclipses of A
Power Spectrum

McLaughlin et al. (2004)
Brenton et al. (in prep)

Eclipse duration
vs. frequency
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Testing Einstein
Experiments made in Solar System provide accurate tests

…but only in weak gravitational field!

In strong gravitational fields, physics may be different!

Scalar
Charge
(for β0=-6)

“Scalarisation”

Damour & Esposito-Farese (1996)

E.g. additional scalar field may appear in strong fields:



Testing Einstein
Experiments made in Solar System provide accurate tests

…but only in weak gravitational field!

In strong gravitational fields, physics may be different!
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Strong-field tests with binary pulsars
Elegant method to test (falsify!) any theory of gravity 
(Damour & Taylor ‘92)

Effects can be described
as Post-Keplerian params
as function of only the
observed  Keplerian parms
and the masses of pulsar 
and companion, eg in GR:

),,( cp mmKfPK =

),,( pc mPKKgm =

f, g depend 
on theory! 

( ) 3/2
2

3/5
3/2

1
1

2
3 cp

b mm
e

PT +
−

⎟
⎠
⎞

⎜
⎝
⎛=

−

π
ω�



Strong-field tests with binary pulsars
Elegant method to test (falsify!) any theory of gravity 
(Damour & Taylor ‘92)

),,( cp mmKfPK =

),,( pc mPKKgm =

f, g depend 
on theory! 

PK3

PK2

PK1

Fail!

Effects can be described
as Post-Keplerian params
as function of only the
observed  Keplerian parms
and the masses of pulsar 
and companion, eg in GR:

( ) 3/2
2

3/5
3/2

1
1

2
3 cp

b mm
e

PT +
−

⎟
⎠
⎞

⎜
⎝
⎛=

−

π
ω�



Strong-field tests with binary pulsars
Elegant method to test (falsify!) any theory of gravity 
(Damour & Taylor ‘92)

),,( cp mmKfPK =

),,( pc mPKKgm =

f, g depend 
on theory! 

PK1

PK2PK3

Pass!

Npk – 2 tests possible

Effects can be described
as Post-Keplerian params
as function of only the
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and the masses of pulsar 
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Double Pulsar: Tests of GR
December 2003 (Lyne et al. 2004)



Double Pulsar: Tests of GR
Kramer et al. in prep.



Double Pulsar: Tests of GR
Kramer et al. in prep.

MB=1.2489(8)M

MA=1.3381(8)M



Double Pulsar: Tests of GR
Kramer et al. in prep.
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Significance of “R”
To 1PN order, Kepler’s 3rd law given in generic form as:
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…so that for “any” theory of gravity to 1PN order:
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xR =≡ Ratio is independent of 

strong (self-)field effects!

Different to other PK parameters, which all depend on 
strong-field modified “constants”!

(e.g. GAB differs from GNewton depending on strong-field effects

Qualitatively 
different
constraint!

Qualitatively 
different
constraint!

e.g. Damour & 
Taylor ‘92



Double Pulsar: Tests of GR
Kramer et al. in prep.

Mass ratio & 5 PK parameters
⇔6-2 = 4 potential tests!
More than in any system!



Double Pulsar: Tests of GR

Expected in GR: Observed:

γ = 0.3840 ms γ = 0.3839±0.0011 ms  (0.3%)

dPb/dt=-1.248x10-12 dPb/dt=(-1.252±0.014) x10-12 (1.2%)

r =6.152 μs r =6.21 ±0.24 μs  (4%)

s=0.99987 s =0.99978 ± 0.00012 (0.01%)

Based on: 
R = 1.071±0.001 & ώ=16.8995±0.0007 deg/yr (0.004%)

0007.00000.1obs

exp

±=
s
s • Best test in strong-field

• Purely non-radiative with
fundamentally different constraint!

Kramer et al. to be submitted.
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Geodetic Precession

•• Relativistic Spin-Orbit Coupling 
• First prediction for binary pulsar 

by Damour & Ruffini (1974)

• Precession rate expected in GR:
(e.g. Barker & O’Connell 1975, Börner et al. 1975)

What effects do we expect to observe?
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Effects of Geodetic Precession



The Effects of Geodetic Precession 

• Pulsar may not always be visible 
• Line-of-Sight will change
• Changes in pulse shape, width and polarization



Geodetic Precession in J0737-3039A
• Precession period of double pulsar only 71/74 years!
• Expect to see effects already!

A B



Spin-orbit coupling

• Formally, spin-orbit coupling enters at 1PN level!
• For binary pulsars however, numerically they are

of size of 2PN effects (Wex 1995), so usually  
they are ignored

• However, for double pulsar, precision in periastron
advance measurements has reached 2PN limit!

Relativistic spin-orbit coupling contributions to observed
periastron advance:



Spin contributions in Double Pulsar
Total periastron advance at 2PN level: Damour & Schaefer (1988)
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Neutron star structure
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Equation of State
• Measurement of M & I better than M & R 

• Even low precision with important consequences for EOS:
E.g. Lattimer & Schutz (2005)

Already some constraints from mass of B under assumption
about supernova explosion (see Podsiadlowski et al. 2005)
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New Scientist, Sep.’04



Evidence for Frame-dragging Effects 
Illustration of frame dragging effects using simple model:

21, αα
• Following Nordtvedt (1988) look at theories in PPN

limit that differ from GR only in PPN parms

• without preferred-frame effects, we get:
(see Nordtvedt 1988, Will 1993) 
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Evidence for Frame-dragging Effects 

• In this simple framework, one can show that

• Determine GR value from Shapiro and mass ratio

which are independent of frame-dragging effects

• Compare predicted GR value to observed value,

obtaining a limit on ∆ and hence non-existing of

frame-dragging

( ) GRobs ωω �� Δ+= 1 ( )
M
μαα 212

6
1

−=Δ

Nordtvedt (1988), Will (1993)

with



Evidence for Frame-dragging Effects 

No Frame-dragging

GR

In our choice of theories, we have 2d-plane for illustration:



Evidence for Frame-dragging Effects 

No Frame-dragging

GR Double Pulsar: 

∆<2x10-3 (95%)

Effects are
clearly seen!

In our choice of theories, we have 2d-plane for illustration:



Evidence for Frame-dragging Effects 

No Frame-dragging

GR Double Pulsar: 

∆<2x10-3 (95%)

Gravity Probe B

Even in this simple framework with only two parameters, one 
sees that Gravity Probe-B is testing different aspects:
No replacement but comforting complementary evidence!
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The Square-Kilometre-Array



The “Square-Kilometre-Array”



The “Square-Kilometre-Array”

• The biggest telescope ever built
• Tackling Noble-prize science
• Construction 2012-2020, first science by 2015
• The science case requires: gigantic collecting area

huge field-of-view (FOV)
large spatial resolution
multiple, independent FOVs
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large spatial resolution
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A Galactic Census of pulsars

• SKA will essentially discover ‘all’ Galactic pulsars!

• Find pulsars around stellar BH and in Galactic Centre
• Measure BH properties: masses, spin & quadrupole moment
• Testing GR description of BHs, such as

Cosmic Censorship Conjecture & No-hair theorem
see Kramer et al (2004), Cordes et al. (2004)

• Find pulsars around stellar BH and in Galactic Centre
• Measure BH properties: masses, spin & quadrupole moment
• Testing GR description of BHs, such as

Cosmic Censorship Conjecture & No-hair theorem
see Kramer et al (2004), Cordes et al. (2004)



SKA Timeline
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Visit: www.skatelescope.org



Until then…
• Double pulsar has lived up to all its expectations
• Valuable tool to probe a pulsar magnetosphere
• Most relativistic system ever found
• Unique testbed for theories of gravity
• Best strong-field test of GR ever
• With continuing timing observations precision will 

continue to improve (“No show-stopper”)
• Double Pulsar will surpass ALL solar system tests!
• Measure relativistic orbital deformation and

aberration for the first time soon
• Measure moment of inertia of a neutron star



Final comment…
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