Detailed study of giant pulses from the millisecond pulsar B1937+21

V.I. Kondratiev & YORK M.V. Popov 🗼 V.A. Soglasnov 🗼 Y.Y. Kovalev & Image Jansky Fellow N. Bartel YORK F.Ghigo 🔜

Outline

- Background
- Observations
- GPs summary, width and energy distributions
- Polarization properties of GPs
- Estimations of T_b and $\boldsymbol{U}_{\mathsf{GP}}$
- Conclusions

Background

- Wolszczan et al. 1984, in Milliseconds Pulsars (Green Bank: NRAO), 63 Sallmen & Backer, 1995, ASP Conf. Ser. 72, p. 340 first reports about small number of strong pulses which are reminiscent of GPs from the Crab
- 2. Cognard et al., 1996, ApJ, 457, L81 Arecibo @ 430 MHz, 44min phases of occurrence (delayed by 40-50 µs), 100% circular polarization, power-law energy distribution with a = -1.8
- 3. Kinkhabwala & Thorsett, 2000, ApJ, 535, 365 Arecibo @ 430, 1420, 2380 MHz (30min, 4h, 26min) spectrum of GPs: ~ -3.1, GPs window ~ 10 μs
- 4. Soglasnov et al., 2004, ApJ, 616, 439 70-m Tid @ 1650 MHz, B=32 MHz, 39min 309 GPs, true widths < 15ns, $T_b > 5 \cdot 10^{39}$ K for the strongest GP with $S_{peak} = 65$ kJy GPs don't affect the regular MP or IP energy distribution is power-law with index of -1.4

100-m GBT

Mark5A recording system was used in single dish mode

For the first time

Courtesy of GB NRAO site

363rd Heraeus Seminar

Observational configuration

June 6, 2005

Mark5A backend

@ LCP & RCP

P

Strongest GP

May 15, 2006

GPs Summary

```
Time processed ~ 5h30min (total time ~ 7h 30min)
Number of GPs: 6334 (6915 events)
 MP = 3234 (51%)
  IP = 3100 (49%)
 LCP = 3489 (50.4%) W = 1844 (26.7%)
 RCP = 3426 (50.6%) X = 1796 (26.0%)
                            Y = 1593 (23.0%)
                            Z = 1682 (24.3%)
GP rate \sigma \ge 20: 4 GPs/min \sigma \ge 17: 20 GPs/min
Number of GPs with \sigma \ge 50 (S<sub>peak</sub> \ge 600 Jy) = 177
```

GPs longitudes

Dynamic spectrum of regular emission

@ RCP

Dynamic spectrum of regular emission

May 15, 2006

Energy fluctuations of regular emission

GPs Instant Spectra

May 15, 2006

GPs Instant Spectra

363rd Heraeus Seminar

GPs Instant Spectra

GPs Widths

E – S_{peak}

LogN – LogS

channel	α ₁	α ₂
LCP W	-2.03±0.02	-1.1±0.1
×	-3.73±0.06	-1.4±0.3
У	-2.48±0.04	
Z	-2.43±0.02	-1.38±0.01
RCP W	-2.63±0.05	-1.41±0.04
×	-2.22±0.03	
У	-3.15±0.04	
Z	-2.25±0.02	
Total	-2.20±0.01	

GPs Number

May 15, 2006

363rd Heraeus Seminar

May 15, 2006

363rd Heraeus Seminar

May 15, 2006

363rd Heraeus Seminar

May 15, 2006

Estimation of brightness temperature of GP emission

Brightness temperature

$$T_{b} = \frac{1}{k} \frac{E_{p}}{\tau_{GP}} \left(\frac{c}{\nu}\right)^{2} \left(\frac{L}{d}\right)^{2} > \frac{E_{p} \cdot L^{2}}{k \nu^{2} \tau_{GP}^{3}}$$

for the strongest GP:

$$S_{peak} = 836\sigma = 10000 Jy$$

 $\tau_{GP} \sim 43 ns$
 $E_{p} \sim 432 Jy \cdot \mu s$
 $v = 2100 MHz$

(Soglasnov et al., 2004, ApJ, 616, 439)

- k Boltzmann's constant
- E_p energy of GP
- L distance to the pulsar = 3.6 kpc (Taylor et al., 1993, ApJS, 88, 529)
- τ_{GP} GP duration
- v observing frequency

 $T_{b} > 10^{37} K$

Estimation of the volume density of the GP radiation energy

The volume density of the GP radiation energy

(Soglasnov et al., 2004, ApJ, 616, 439)

$$u_{GP} \approx \frac{E_{p} \Delta \nu}{W \tau_{GP} c} > E_{p} \cdot \left(\frac{2\pi L}{P}\right)^{2} \frac{\tau_{WGP}^{2}}{c^{3} \tau_{GP}^{4}}$$
$$W = \left(\frac{d}{L\theta}\right)^{2} < \left(\frac{P \tau_{GP} c}{2\pi \tau_{WGP} L}\right)^{2} - dile$$

ution factor

 $\Delta v \sim \tau_{\rm GP}^{-1}$ - GP bandwidth

for the strongest GP:

$u_{GP} > 10^{13} \text{ erg} \cdot \text{ cm}^{-3}$	GP	NS	LC	
	1013	2·10 ¹³	4·10 ¹⁰	plasma
		7 ·10 ¹⁵	4 ·10 ¹⁰	magnetic field

Conclusions

- Mark5A recording system was used for the first time in single dish mode in our observations;
- GPs shapes are affected by scintillations with scintillation time of ~ 30 min and decorrelation bandwidth of ~ 8 MHz;
- Width of the most GPs is of about 20 ns that is the result of scattering;
- GPs energies exhibit power-law statistics with the average index of -2.2;

 GPs are highly polarized events with polarization degree up to 100% at circular or linear polarization. Mean linear polarization degree is 40%.
 75% of GPs have peak circular polarization degree more than 60%;

