Pulsar Surveys Present and Future: The Arecibo-PALFA Survey and Projected SKA Survey



Arecibo Telescope



SKA concept design

Julia Deneva, Cornell University, USA

15 May 2006 363<sup>rd</sup> Heraeus Seminar, Bad Honnef, Germany

# **Pulsar-ALFA Consortium**

#### USA

- Bryn Mawr College
- Carleton College
- Cornell University
- Columbia University
- Franklin and Marshall College
- Harvard-Smithsonian Center for Astrophysics
- Harvard University
- NASA Goddard Spaceflight Center
- National Astronomy and Ionosphere Center
- National Radio Astronomy Observatory
- University of California-Berkeley
- U.S. Naval Research Laboratory

#### Canada

- McGill University
- University of British Columbia

- Australia
  - Swinburne University of Technology

#### India

Raman Research Institute

#### China

 National Astronomical Observatories of China

#### UK

- Jodrell Bank Observatory
- University of Manchester
- Netherlands
  - Astronomical Institute "Anton Pannekoek"

# The Arecibo L-band Feed Array (ALFA)





- ALFA receiver: 7 beams; 1.42 GHz
- PALFA (pulsar), GALFA (galactic), EALFA (extragalactic)
- PALFA survey to last 3-5 years and find hundreds of pulsars
- Started in Aug 2004

# **Multi Beam Pattern**

#### **TE11 25cm x 26.0cm**



Sky Area 25' x 25'

Dense vs. sparse sampling:

- Tile pointings densely and do 1 pass?
- Tile pointings sparsely and do several (non-redundant) passes to fill in holes?
- Survey efficiency depends on volume searched per time
- Sparse sampling is more efficient because pulsars can also be detected with the sidelobes

# Multi Beam Sky Footprint and Pointing Tiling Pattern





#### http://www.naic.edu/~pfreire/tiling/

## **Survey Comparison**



 Blue: known pulsars from surveys other than Parkes MB
Red: pulsars discovered by Parkes MB
Green: simulated pulsar discoveries by

PALFA (~1000)

# **PALFA Survey Parameters**

Comparing PALFA and Parkes Multibeam Surveys.

| Item                                                              | ALFA + WAPPs | ALFA II  | PMB   |
|-------------------------------------------------------------------|--------------|----------|-------|
| System Parameters:                                                |              |          |       |
| SEFD <sup>a</sup> (Jy)                                            | 3.6(4.6)     | 3.6(4.6) | 36    |
| FWHM/beam (arcmin)                                                | 3.6          | 3.6      | 14    |
| No. of beams                                                      | 7            | 7        | 13    |
| Total Bandwidth (MHz)                                             | 100          | 300      | 288   |
| Spectral channels                                                 | 256          | 1024     | 96    |
| Bandwidth/channel (MHz)                                           | 0.39         | 0.29     | 3.0   |
| Dump time $(\mu s)$                                               | 64           | 64       | 250   |
| Dwell time/position (s)                                           | 67, 134, 268 | 134, 268 | 2100  |
| Sky coverage rate <sup>b</sup> (deg <sup>2</sup> hr <sup>-1</sup> | 1.2          | 3.6      | 0.95  |
| $S_{\min_1}^c \text{ in 1 } \min(\mu Jy)$                         | 330 (420)    | 190(241) | 1900  |
| $\Delta t_{\rm DM} \ ({\rm DM} = 50) \ (\mu {\rm s})$             | 59           | 44       | 453   |
| Survey Parameters:                                                |              |          |       |
| $S_{\min}^*$ (µJy)                                                |              |          |       |
| $(1 \text{ s}, \text{DM} = 0 \text{ pc cm}^{-3})$                 | 119          | 48       | 150   |
| $(1 \text{ ms}, \text{DM} = 50 \text{ pc cm}^{-3})$               | 700          | 460      | 6,600 |
| $D_{\text{max}}^{\dagger}$ (kpc)                                  |              |          |       |
| $(1 \text{ s}, 1 \text{ mJy kpc}^2)$                              | 2.9          | 4.6      | 2.6   |
| $(1 \text{ ms}, 1 \text{ mJy kpc}^2)$                             | 1.2          | 1.5      | 0.4   |
| $V_{\rm max}$ $(\rm kpc^3 \ sr^{-1})$                             |              |          |       |
| $(1 \text{ s}, 1 \text{ mJy kpc}^2)$                              | 8.1          | 32       | 5.8   |
| $(1 \text{ ms}, 1 \text{ mJy kpc}^2)$                             | 0.6          | 1.1      | 0.02  |

## **PALFA** Pipeline

Quicklook software—periodicity and giant pulse search in decimated data (on-site, while observing)

- Discoveries so far were made by Quicklook output
- Almost real time!

Data shipped to Cornell for permanent archiving

- Tape archive at Cornell Theory Center
- Tools for remote access and data processing
- Full-resolution processing at Cornell and other institutions
- Several different codes (sanity check): Presto, Sigproc
- Collaboration on harvesting most efficient parts of each code and combining them

## **PALFA** Discoveries

29 pulsars total (from real-time processing of decimated data)
2 in Anticenter
1 RRAT-like object (J0628+09)
1 relativistic binary (J1906+07)

## **Rotating RAdio Transients (RRATs)**

Newly defined class of radio-loud neutron stars

- 11 found in Parkes data (McLaughlin et al. 2006)
- 1 found by PALFA so far
- Sporadic bright bursts with distribution different from giant pulses
- Emission mechanism likely different from GPs
- B at light cylinder much lower than for GPemitting pulsars
- Re-assessment of total Galactic pulsar population
- On/off ratio very low--how many RRATs are there?

### **J0628+09**



Pulse Phase (ms)

### J1906+07 Discovery





**Discovery observation 27.09.2004** 

## J1906+07 Parameters

- P = 144 ms
- P' = 2.03 × 10<sup>-14</sup> s/s
- P<sub>b</sub> = 3.98 h
- Eccentricity: e = 0.085
- DM = 217
- S<sub>1.4</sub> = 0.55 mJy
- Characteristic age, T<sub>c</sub> = P/2P' = 112 000 yr
- Magnetic field:  $B = 1.7 \times 10^{12} G$
- Spectral index: –1.3
- Total system mass, M = 2.61M<sub>sun</sub>
- Gravitational wave coalescence time, τ<sub>q</sub> ~ 300 Myr



Evolution of interpulse due to geodetic precession: data taken at Parkes in 1998 (top) and 2005 (bottom).

## **Getting the Goods**

- Tape archive at Cornell Theory Center—to grow to ~1PB (ideally 40000+ pointings)
- Database of data products hosted at CTC—to grow to ~25TB
- Dedicated 16-proc Unisys machine to process full-resolution data and run MS SQL server
- Web service for querying database and retrieving info in VOTable format
- Web service clients written by PALFA members (or any user of the archive)



# **Square Kilometer Array Specifications**

| Parameter                                      | Design Goal                                                                                                                                                                                                                                                                                         |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Frequency range                                | 100 MHz - 25 GHz Goal: 60 MHz - 35 GHz                                                                                                                                                                                                                                                              |  |
| Simultaneous independent observing bands       | 2 pairs (2 polarizations at each of two independent frequencies, with same FoV centers)                                                                                                                                                                                                             |  |
| Instantaneous bandwidth of each observing band | Full width = 25% of observing band center frequency, up to a maximum of 4 GHz BW for all frequencies above 16 GHz                                                                                                                                                                                   |  |
| Configuration                                  | Minimum baselines 20 meters,<br>20% of total collecting area within 1 km diameter,<br>50% of total collecting area within 5 km diameter,<br>75% of total collecting area within 150 km diameter, maximum<br>baselines at least 3000 km from array core (angular resolution <<br>0.02 / fGHz arcsec) |  |
| Contiguous imagingfield of view (FoV)          | 1 sq. deg. within half power points at 1.4 GHz, scaling as $\lambda^2$ , 200 sq. deg. within half power points at 0.7 GHz, scaling as $\lambda^2$ between 0.5-1.0 GHz                                                                                                                               |  |

### **Complete Galactic Pulsar Census**

~10000-20000 projected pulsar discoveries!

Statistically likely to include exotic objects: double pulsars binaries, pulsar-BH binaries, submillisecond pulsars

High-precision timing of binary and MSPs
Measuring relativistic orbital effects

 Many objects to follow up—multiplexed timing and astrometry with separate sub-arrays

### Find them! Time them! VLBI them!



Blue: known pulsars from surveys other than PMB Red: pulsars discovered by PMB Green: simulated pulsar discoveries by PALFA (~1000)



#### Black: known pulsars

Blue: simulated pulsar discoveries by SKA (~10000)--64 μs samples, 1024 channels, 600 s per beam

## **Galactic Payoffs**

### Galactic Center pulsars

- Probing location and depth of GC ionized gas "screen"
- Movement in potential of central BH
- Measuring spin of BH from timing
- Probing electron number density
- Star formation history
- Galactic grav. potential
- Proper motions and parallaxes



**Electron distribution** 

## **Extragalactic Payoffs**

### Giant pulse detection: pulsars in other galaxies

- Current: a few pulsars known in LMC and SMC
- Searches for giant pulses from M31

#### Missing baryon problem

- 4% of energy density in Universe as baryonic matter
- Only a fraction of that accounted for by observations; what about not easily observable, compact dense objects?

#### Probes of inter-galactic medium

- Analogous to probing interstellar medium in the Galaxy

### Formation and population statistics

## **Pulsar Astrophysics Payoffs**

- Magnetospheric properties
- Emission processes
- Pulsar wind nebulae, bow shocks and jets
- Equations of state
  - Properties of matter under extreme conditions
  - Fastest, slowest, most massive, least massive pulsar?

## **Gravitational Wave Detection**

- Pulsar serve as arms of a huge grav. wave detector
- Oscillations in space-time can be detected in timing residuals
- Maybe hidden in timing noise how to process and extract them?
- "Strain" h<sub>c</sub>(f)—measure of space-time distortion:

$$h_c(f) \sim \frac{\sigma_{TOA}}{T}$$



**PTA: Pulsar Timing Array**