The Radio Emission Properties of Pulsars

Andrew Lyne University of Manchester, UK

Neutron Stars and Pulsars, Bad Honnef 15th May 2006

Jodrell Bank Observatory

Home to the Lovell Telescope and operations centre for PPARC's MERLIN/VLBI National Facility

Current (lack of) understanding

Introduction

Repeating Radio Transient sources (RRATs)

- Discovery
- Properties
- Galactic population
- Relationship to normal pulsars ?
- Sometimes a pulsar (B1931+24)
 - The quasi-periodic phenomenon
 - The changing slow-down rate
 - Implications for magnetospheric currents

Rotating Radio Transient Sources – RRATs

Mclaughlin et al. 2006, Nature 439, 817-820

The Parkes Multibeam Pulsar Survey
 New transient sources
 Detection of periodicity
 Galactic population

The Parkes Multibeam Pulsar Survey

- 13-beam receiver on Parkes 64m radio telescope at 1400 MHz
- Team lead by JBO, ATNF, Cagliari
- 260<l<50, -5<b<+5
- 35-min dwell time
- Most sensitive & most successful
- More than 740 discoveries
- Lots of exciting systems...

Manchester et al. 2001, Morris et al. 2002 Kramer et al. 2003, Hobbs et al. 2004, Faulkner et al. 2004

Transient Event Search

- Conducted a search for single, dispersed transient events in the Parkes Pulsar Multibeam Survey data set
- Good sensitivity to pulsars with occasional "giant" pulses

J1819–1503

 $DM = 194 \text{ pc cm}^{-3}$

No periodicity detected, but confirmed

J1317-5759

J1443-60

J1826-1429

- 11 sources confirmed
- FFT searches showed no periodicity
- Time difference analysis reveals periodicity in 10 sources

J1819–1503 DM = 194 pc cm⁻³

Arrival time differencing reveals period of 4.26 sec

Characteristics of new sources:

- Burst lengths: 2-30 msec
- Maximum burst flux density 0.1-4 Jy
- Mean interval between bursts: 4 min 3 hrs
- Periods: 0.4-7sec, <P> = 3.1 sec

- For 3 of the 10 RRATs with periods, coherent timing solutions have been obtained from burst arrival times
- This gives values of Period Derivative (and position)

J1819-1458 has B~0.5x10¹⁴
Gauss, close to Magnetars
All youngish: Age 0.1-3 Myr

Previously unknown Galactic population

- Concentrated towards plane and inner Galaxy like normal young pulsar population
- Selection effects are considerable
- Only long observing times can detect them
- Terrestrial impulsive interference is severe, particularly for small DMs

Galactic population

 $N = 4 \times 10^5$

 $x(L_{min}/10 \text{ mJy kpc}^2)x(0.5/f_{on})x(0.5/f_{int})x(0.1/f_b)$

Summary

- I1 ephemeral objects which only radiate for typically 0.1-1 second/day
- Not detectable in periodicity searches or by folding
- Periods found for 10 from time differences
- Probably rotating neutron stars
- Ages 0.1–3 Myr
- Possible relationship with magnetars
- Large galactic population

Summary

But why do they only radiate so rarely ?

Sometimes a Pulsar – PSR B1931+24

- (Kramer, Lyne, O'Brien, Jordan and Lorimer 2006 Science, 312, 549)
- Introduction
- Seemingly 'normal' pulsar
- Long time-scale, quasi-periodic switching
- Are there any others ?
- Conclusions

Some unexpected help...!

It looks like an ordinary pulsar... when you see it!

Sometimes a pulsar...

- 'On' for 1 week, 'off' for 1 month
- Only visible for ~20% of time
- Relatively strong when on
- Deep observations do not show any emission when off
- Broadband phenomenon
- Complete radio emission is shut off in <10 sec to remain off for ~month

Sometimes a pulsar...

... and the whole process is (quasi-) periodic!

What causes phenomenon? Is this related to "Nulling" ? Emission << mean pulse power</p> Durations of typically a few pulse periods No nulls in B1931+24 during 'on' phase Is the periodicity due to Free Precession ? Slow periodic wobble But switches 'off' in <10 seconds</p> No profile changes Therefore probably not precession Probably some relaxation oscillation of unknown origin, internal to NS

More surprises...

...the spin-down is faster when on!

The facts and their explanation...

- Pulsar is active in periodic fashion
- When the pulsar emits radio emission, its brakes more
- When the radio emission is shut off, the braking is less

Simplest explanation:

- the braking is related to radio emission
- the plasma creating the radio emission provides the expected extra torque
- when the plasma is absent, braking is less

 \rightarrow First observational evidence for pulsar wind torque

Summary

- · We found a new pulsar phenomenon
- Unexpectedly, it has consequences for spin-down
- First observational evidence for pulsar wind torque
- First ever chance to test basic magnetospheric theories
- Confirmation of Pacini & Goldreich-Julian model
 39/37 years after they have been proposed

We can do more...!

We observe different losses in rotational energy:

$$\dot{E}_{ON} = 4 \pi^2 I v \dot{v}_{ON}$$

$$\dot{E}_{OFF} = 4 \pi^2 I v \dot{v}_{OFF}$$

In our simple model:

$$\dot{E}_{ON} = \dot{E}_{OFF} + \dot{E}_{Wind}$$

The wind contributions contains information about the torque and hence charge density in the current associated with radio emission:

$$\dot{E}_{Wind} = \dot{E}_{ON} - \dot{E}_{OFF} = \Omega T$$

$$T = \frac{2}{3c} jB_{0}R_{pc}^{2} \qquad j = c \pi R_{pc}^{2} \rho$$

The charge density

We find:
$$\rho = \frac{3 I (\dot{v}_{ON} - \dot{v}_{OFF})}{R_{pc}^4 B_0}$$

Based on observations, canonical values for size and moment of inertia, and computing magnetic field from OFF-period spin-down: areeme

$$\rho = 0.034 \quad \frac{C}{m^3}$$

vithin 2%

Goldreich & Julian predict:

$$\rho_{GJ} = \frac{B_0}{Pc} = 0.033 \frac{C}{m^3}$$

Any more like this?

Many more should exist
 Inspected Parkes Multibeam Pulsar Survey
 Any amongst 750 new pulsars found ?

Yes! 4 more!!

Properties: J1107-5907

Exhibits 3 different emission states

Period = 253 ms

Unusually small period derivative = 1.13(6) x 10⁻¹⁷

Large characteristic age = 354 Myr

=> Interesting region – normal / recycled pulsars

Properties: J1717-4054

Observations show 'on' < 20% time
No periodicity yet

Properties: J1634-5107

- Strong 'on' state
- Completely 'off' state
- Quasi-periodicity ~ 10 days

Properties: J1832+0031

'on' state >300 days
'off' state ~700 days

Quasi-periodicity ?

Increase in slow-down rate during 'on' state similar to B1931+24

Conclusions

 Pulsars do not always emit
 PSR B1931+24 showed new bursty behaviour on a quasi-periodic timescale
 Found 4 other similar pulsars

- From simple calculations, they represent a significant fraction of Galactic population
- Provide evidence that particles play large role in slow-down – a handle on particle densities

Conclusions

What is the origin of the periodicity ?
Why does the particle flow fail ?
Are there ANY particles during 'off' phase ?
What happens in other wavebands ?
Need to expand observational base of phenomenon (more pulsars)

Neutron Star Spin-down

NS magnetic fields are calculated as:

$$B = \sqrt{\frac{3c^3}{8\pi^2}} \frac{I}{R^6 \sin^2 \alpha} P \dot{P} = 3.2 \cdot 10^{19} \sqrt{P \dot{P}} Gauss$$

where P=1/v

Characteristic ages are calculated as:

$$\tau = \frac{1}{n-1} \frac{P}{P} \stackrel{n=3}{=} \frac{P}{2P}$$