
Software tools to easily store, share and present scientific data:
MCS, a new approach to data treatment in astronomical projects

Giorgio Calderone, Palermo & Luciano Nicastro, IASF-INAF, Bologna, Italy

Instrument
The software controlling the scientific instrument can inform the MCS server that new data are

available using the Client class to connect to it and send all data and/or files through the
connection. The software can also receive commands from the MCS server, for example if it is a
telescope, the coordinates to point it at or the filter to use. Data sent to the server can be stored in
the database or in a dedicated directory or relayed to another MCS server over the internet.

In brief
MCS is a set of C++ high level, easy to use, classes aimed at implementing an application server, that is an application

that provides a service over the network. Its main features, amongst others, are the possibility to customize the
server behaviour through the derivation of some classes, and the usage of a well defined communication protocol
(the MCS protocol).

With MCS you can easily implement custom services on top of which different users (say scientists, technicians and
other people) can perform requests to a common database through several tools obtaining different types of data,
depending on the tool used and the user permissions. The MCS protocol and software tools let user’s application
obtain data in a well defined binary fashion or plain text, so that they are ready to be processed further.

So MCS and its protocol are for software applications, what a web server and HTTP are for the WWW: a simple way
to access data. In this comparison customizing the MCS server is like writing a web page.

In a typical scientific experiment we have an instrument producing data, a main storage system, a set of software
tools to perform analysis, and people with different needs who wish to access the data. In this poster we’ll analyse
the components of an informative system based on MCS, applied to such an experiment.

Database
The database is used to store all application specific data, for example a log of what has been done

by the instrument, the list of files produced by it, house-keeping information, etc. It is worth
noting that the data can be either left in files (in any format) or reported in BD tables. In the latter
case it could be worth implementing DB engines which allow a transparent I/O on these tables as
if they where files with the original format. MCS foresees FITS and VOTable engines at the
moment. Once the data have arrived to the MCS server the LocalThread class can be used to
perform a quick-look of the data and store the results in the DB as well.

MCS
MCS is the core of the informative system. Its classes are designed to hide all low-level aspects of

implementing an application server like socket handling, multi threading, etc…Users should only
provide the code to implement specific tasks. The service offered by MCS is similar to an
operative system shell which allows you to execute commands. Customizing the server means
implementing new user commands. Note that a set of Astronomy oriented tools are already (or
will soon be) available as a user contributed library. It includes the HTM and HEALPix libraries
used for sky pixelization and objects indexing, as well as the astrometric NOVAS library for date
and coordinates conversion as well solar system bodies information.

A schematic example of a customisation to perform a fit over some data stored in the Database:

If (Command == MAKE_FIT) {
GET data from db;
FIT data;
RETURN data to user;

}

Similarly if, for example, you wish to make a sky map of survey data.

Web server
A web server can easily be turned into an MCS client using the provided PHP interface. This way

you can build dynamic web pages which can show the status of an experiment or Observatory, as
well as create real-time outreach information. This can be done already by using other
libraries/tools but you’ll probably need to put together different data produced by independently
developed s/w. MCS offers a single homogeneous environment which can easily host existing s/w
with little changes.

Users
MCS provides a number of interfaces to different programming languages: C/C++, Fortran, IDL,

PHP. Using any of these interfaces you will get the full potentiality of MCS and its binary
protocol. New interfaces will be implemented in the near future: Perl, Python, Java. The data
transferred (in both directions) can be in a binary format, but can also be in the form of a FITS,
XML or VOTable file. Finally MCS has also a “text only” mode by which you can access the
server using a simple telnet client. This interactive mode is very useful for quick checks on
the DBs and to perform simple tasks.

External programs
If you already have programs or routines to analyse the data, you can customize the
LocalThread class so that, as soon as they are ready, they are automatically analysed using
that software and the results made available to the (authorized) users. External programs can also
be executed as a response to a user custom commands (processing on demand).

Server sideServer side

Client sideClient side

http://spora.ifc.inaf.it/mcs/

MCS is open source and it is downloadable from the Web or requested to us. Documentation is included in the
distribution and it is available as doxygen HTML pages. A descriptive document (TeX+PDF) is also included. The
distributed tarball provides the typical and simple configure/make/make install sequence. The only
required external libraries are libmysqlclient and libpcre. A full test suite is included together with demo
programs in the various supported languages. If you wish IDL/PHP compatibility you need these packages to be
installed too. Please note that the library is in continuous improvement so we ask the interested people to get in
contact with us. We are seeking collaborations and we plan to have a distribution mailing list. The current version of
MCS is 0.2.1. Get it from spora.ifc.inaf.it/mcs/mcs-0.2.1.tar.gz

A demo describing the example reported in this poster is accessible at ross.iasfbo.inaf.it/demo_mcs/

Flow diagram for an MCS Server/Client system.
One Server accepts multiple connections from
Clients on the internet performing the requested
tasks.

This diagram summarises the way MCS works. A
Server collects data coming from an Experiment
(ground or space based) and saves log information
and data into DB tables.

A Client sends requests (using any language
capable of socket connection) and retrieves
info/data. Eventually require the Server to
perform specific tasks on the data getting the
results back, for example a sky map. The
programs can be written in any language.

REM at La
Silla, Chile

	Software tools to easily store, share and present scientific data:�MCS, a new approach to data treatment in astronomical proje

