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AbstractAbstractAbstract

A new scheme for testing nuclear matter equa-

tions of state (EsoS) at high densities using

constraints from neutron star phenomenology

is suggested [1]. An acceptable EoS shall not

allow the direct Urca (DU) process to occur

in neutron stars with masses below �	
��
and not to be in conflict with the known

Temperature-Age data of observed objects.

Compact star constraints include the mass

measurements of 2.1 
0.2 M�(1 �level) for

PSR J0751+1807 [2], of 2.0 
0.1 M�from

the innermost stable circular orbit for 4U

1636-536 [3], the baryon mass - gravitational

mass relationships from Pulsar B in J0737-

3039 and the mass-radius relationships

from quasiperiodic brightness oscillations

in 4U 0614+09 [4] and from the thermal

emission of RX J1856-3754[5]. The scheme

also includes comparison with LogN-LogS

data within a population synthesis approach

[6]. It is applied to a set of relativistic EsoS

constrained otherwise from nuclear matter

saturation properties [1]. A possible transition

to quark matter is discussed for a three-flavor

NJL model [7], parametrized from the meson

properties in vacuum [8].

Hadronic and Quark EoSHadronic and Quark EoSHadronic and Quark EoS

�Relativistic meanfield EsoS for Hadronic

matter are contrasted to the microscopic

Dirac-Brueckner-Hartree-Fock (DBHF) ap-

proach [9], where the nucleon self-energy �
is based on the T-matrix for a Bonn A po-

tential.�The Quark matter EoS is derived for a three-

flavor Chiral Quark Model (NJL) with cou-

pling to scalar diquark (��) and vector me-

son (��) meanfields [7].

Maximum mass & DU constraintMaximum mass & DU constraintMaximum mass & DU constraint

�Stable configurations for different

hadronic models [1]. Filled circles denote

the DU threshold.
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�Stable configurations for different hybrid

models
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�
Hybrid stars can have a mass of

���	���(��)
�

Masses of
�	�M�require the EoS to be rather stiff.

DU constraintDU constraintDU constraint

�Direct Urca (DU) processes - the �-decay,��������� , is the most effective mech-

anism cooling compact stars. Even un-

der consideration of nucleon superfluidity it

leads to an unacceptable fast cooling of

NSs in disagreement with present observa-

tional soft X-ray data in the temperature -

age diagram [10, 11]

�Avoiding DU-cooling requires a rather soft

asymmetry energy in nuclear matter and all

quarks to be gapped in quark matter.

Temperature-Age & Log N–Log STemperature-Age & Log N–Log STemperature-Age & Log N–Log S

�Additionally to the explanation of the known

Temperature-Age data cooling calculations

shall not predict the existence of young and

hot objects (!"#$%&'()*+,-".	
) with tem-

peratures higher than the temperatures of

already observed objects.�
Brightness Constraint[12]
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�LogN-LogS constraint emerges from results

of NS cooling calculations and population

synthesis models for young, nearby NSs [6].
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�Constraint requires a rather broad spec-

trum of masses for young nearby NSs.
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Population synthesis

�The Hybrid star cooling behavior fits these

constraints assuming the existence of a 2SC

phase with X-gaps.

Mass-Radius constraintsMass-Radius constraintsMass-Radius constraints

�An upper bound in the mass-radius plane

is derived from the quasiperiodic oscillations

(QPOs) of the low-mass X-ray binary (LMXB)

4U 0614+09 [3].�For some LMXB’s there are measurements

of the frequency corresponding to the inner-

most stable circular orbit ,/012�3�
. For

the NS in the system 4U 1636-536 a mass

limit of
�	4
4	���has been obtained [4].
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�The thermal radiation of the isolated pulsar

RX J1856 determines a lower bound for its

mass-radius relation [5].�The M-R constraint implies a stiff EoS.

Gravitational mass- Baryon massGravitational mass- Baryon massGravitational mass- Baryon mass
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�Pulsar B in the double pulsar system

J0737–3039 has a mass
�5�	�.6
4	44���

[13]. Assuming mass conservation during

the progenitors collapse its baryon mass is�	!33��7�87�	!9
��[3].�This requires a rather strong binding of the

compact star.

Flow constraint from HICFlow constraint from HICFlow constraint from HIC

�The analysis of the elliptic flow in heavy ion

collisions within a kinetic theory constrains

an allowed region in the pressure-density di-

agram of symmetric nuclear matter [14]

.
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�The flow constraint rules out very stiff EsoS.

Phase diagram for HICPhase diagram for HICPhase diagram for HIC

�The phase diagram shows a very weak

order (almost cross-over) phase transition

quark matter. At low temperatures nuclear

matter and quark matter with color

conductivity are rather similar, therefor

phase transition is not strong.
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SummarySummarySummary

�A test scheme for the high density

EoS by the present phenomenology

matter in compact stars and heavy-ion

lisions is developed.�The application of this scheme for EsoS

deconfinement phase transition allow

identify the most of compact objects

brid stars.�The phase transition to quark matter

be a solution for those nucleonic

which otherwise would not satisfy

constraints for the high-density behaviour

(�:!�').
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