

We present a multicomponent model to explain the features of the pulsed emission and spectrum of the pulse, on the basis of X and γ -ray observations performed with BeppoSAX, INTEGRAL and CGRO. This model explains the evolution of the pulse shape and of the phase-resolved spectra, ranging from the optical/UV to the GeV energy band, on the assumption that the observed at the optical frequencies, while the second component, C_{X} , is dominant in the interpeak and second peak phase regions. The spectra of these components are modelled with log-parabolic laws. Moreover, to explain the properties of the pulsed emission in the MeV-GeV band, we introduce two more components, $C_{O\gamma}$ and $C_{X\gamma}$, with phase distributions similar to those of C_O and C_X and log-parabolic spectral behaviour and the changes of the pulse shape with energy. We also propose some possible physical interpretations in which C_O and C_X are emitted by secondary pairs via synchrotron mechanism while $C_{O\gamma}$ and $C_{X\gamma}$ can originate either from Compton scattered or primary curvature photons.

structure with a phase separation of 0.4.

has not been found so far.

are introduced, both with a similar shape and spectrum of the X-ray counterparts.

reproduced (Massaro *et al.*. 2000).

linearly increasing with LogE (fig. 2).

A multicomponent model for the optical to γ -ray emission from the Crab Pulsar

Riccardo Campana¹, Enrico Massaro¹, Giancarlo Cusumano², and Teresa Mineo²

¹ Department of Physics, University of Rome "La Sapienza", Rome, Italy ² INAF – IASF-Pa, Palermo, Italy

Abstract

