

The pulsar contribution to the new EGRET γ-ray sources

Isabelle A. Grenier¹, Alice K. Harding² Jean-Marc Casandjian¹, Peter L. Gonthier³

¹AIM, Service d'Astrophysique, CEA Saclay, France ²NASA Goddard Space Flight Center, Greenbelt, USA ³Hope College, Department of Physics and Engineering, Holland, USA

Rationale

Pulsars may largely contribute to the unidentified γ -ray sources at low and medium latitudes. The addition of a new component in the interstellar γ -ray background has recently led to a substantial revision of the EGRET sources, especially at medium latitudes. We compare their space and flux distributions with the predictions from the slot-gap and the outer-gap for pulsed emission. We use Monte-Carlo simulations of neutron stars matching the population of known radio pulsars. The γ -ray luminosity evolves with spin-down power and age. We use synthetic lightcurves based on the field lines geometry to compute the flux as a function of magnetic inclination and viewing angle. A detailed sensitivity map of the EGRET survey is used to compare to the sources.

- new, brighter, interstellar γ -ray background
 - addition of massive envelopes of dark gas around the nearby CO clouds (Grenier et al.'05)
 - significant and structured additional emission at |b|
 < 50°
- numerous faint 3EG sources are not confirmed
 - In particular, most of the Gould Belt sources
- the new persistent sources exhibit
 - a large spread in latitude reminiscent of AGN
 - a mild concentration of Galactic objects at |b| < 40°
 - a sharp concentration of young objects in the plane

new EGRET sources

(I, b) distribution of the persistent sources detected over 9 years. The colours indicate unidentified sources, sources with a radio pulsar counterpart in the error box and known pulsed sources. Identified AGN are not displayed.

new EGRET sources

4EG persistent sources: latitude distribution

only the ATNF pulsar counterparts in the error box with a 1sr γ -ray luminosity at the pulsar distance L_{1sr} < 10 Ė have been retained

new EGRET sources

- following Gonthier et al. '04:
 - > 33 million objects evolved in the Galactic potential
 - using the new velocity distribution (Hobbs et al. '05)
 - constant birth rate over 1 Gyr
 - random initial periods between 1 and 150 ms
 - 2 gaussian B distributions around 10^{8.75} and 10⁹ T at birth, with a decay timescale of 2.8 Myr
 - random magnetic inclinations $0^{\circ} < \alpha < 90^{\circ}$
 - random viewing angles $0^{\circ} < \zeta < 180^{\circ}$
- radio emission described in Gonthier et al. '04
 - simulated objects scaled to match the number of radio pulsars detected in 9 surveys

simulated pulsars

- ICS death line for radio emission
- curvature radiation pair death line for the slot gap (Muslimov & Harding '03)

 $\log \dot{P} \ge 2.5 \log P - 14.0$

 death line for a fractional outer-gap size f_s = 1 (*Zhang et al. '04*)

 $\log \dot{\mathsf{P}} \ge \frac{10}{3} \log \mathsf{P} - 14.6$

slot-gap model for γ rays

$\begin{array}{ll} \bigstar \text{ luminosity} & \mathsf{L}_{\gamma} = \varepsilon_{\gamma} \, \mathsf{L}(\mathsf{e}_{1}^{\pm}) & \varepsilon_{\gamma} = 0.1 \, \text{was adopted} \\ \mathsf{L}_{\gamma} = 0.0517 \, \varepsilon_{\gamma} \, \dot{\mathsf{E}} \, \mathsf{P}_{0.1}^{3} \, \mathsf{B}_{8}^{-12/7} I_{38}^{-9/7} \left[0.123 \cos^{2} \alpha + 0.512 \theta_{\mathsf{PC}}^{2} \sin^{2} \alpha \right] & \text{for } \mathsf{B} < 0.1 \mathsf{B}_{\mathsf{cr}} \\ \mathsf{L}_{\gamma} = 0.0065 \, \varepsilon_{\gamma} \, \dot{\mathsf{E}} \, \mathsf{P}_{0.1}^{3} \, \mathsf{B}_{8}^{-9/7} I_{38}^{-9/7} \left[0.123 \cos^{2} \alpha + 0.512 \theta_{\mathsf{PC}}^{2} \sin^{2} \alpha \right] & \text{for } \mathsf{B} > 0.1 \mathsf{B}_{\mathsf{cr}} \\ \diamondsuit \text{ beam aperture} & \Omega_{\gamma} = 25.08 \, \theta_{\mathsf{PC}}^{2} \, \mathsf{P}_{0.1} \, \mathsf{B}_{8}^{-4/7} I_{38}^{-3/7} & \text{for } \mathsf{B} < 0.1 \mathsf{B}_{\mathsf{cr}} \\ = 12.54 \, \theta_{\mathsf{PC}}^{2} \, \mathsf{P}_{0.1} \, \mathsf{B}_{8}^{-3/7} I_{38}^{-3/7} & \text{for } \mathsf{B} > 0.1 \mathsf{B}_{\mathsf{cr}} \end{array}$

beam pattern and evolution

Muslimov & Harding '03

- following the phase-plot with α and ζ_{obs}
- normalized to the mean beam intensity to account for its evolution with P and Pdot

$$\bar{I} = \left\langle \frac{dL}{d\Omega} \right\rangle_{\text{phaseplot}} = \frac{2 \, \mathsf{L}_{\gamma}}{\Omega_{\gamma}} = \mathsf{f}(\mathsf{P}, \dot{\mathsf{P}})$$

slot-gap phase-plots

radiation pattern with phase (x axis) and viewing angle (y axis) for different magnetic inclinations for the slot gap *after Dyks & Rudak '03*

✤ luminosity

- $L_{\gamma} = 1.36 \, 10^{26} \text{ W P}^{-2/7} B_8^{2/7} \eta^3(\alpha, P, B) \text{ for } L_{\gamma} < \dot{E}$
- the η < 2 correction with α has not yet been implemented
 Zhang et al. '04

beam aperture

- calculated from the phaseplot with $\boldsymbol{\alpha}$
- close to the $\alpha^{1/2}$ dependance given in Zhang '00

beam pattern and evolution

- following the phaseplot with α and ζ_{obs}
- no beam evolution with P and Pdot

outer-gap phase-plots

radiation pattern with phase (x axis) and viewing angle (y axis) for different magnetic inclinations for the outer gap

γ-ray fluxes

energy flux derived
 from the lightcurves for
 α and ζ

$$\nu F_{\nu} = \frac{\int I(\alpha, \zeta, \phi) d\phi}{2\pi D^2}$$

spectral hardening from E^{-2.1} to E^{-1.3} with log(age) to translate the energy flux in photon flux

predicted γ -ray flux distributions outer-gap photon fluxes slot-gap photon fluxes 3.5 4 GLAST 3.5 GLAST :EGRET 3 EGRE1 3 2.5 2.5 log(N_{psr}) log(N 2 2 1.5 1.5 0.50.5Ū -14 -12 -10 -8 -6 -4 -12 -14 -8 -10 -6 -4 $\log(F_{v}) \gamma \text{ cm}^{-2} \text{ s}^{-1}$ $\log(F_{y}) \gamma \text{ cm}^{-2} \text{ s}^{-1}$

visible slot-gap pulsars

the total number of visible objects shown here must be scaled down by 0.6 to match the number of radio detections: \sim 29 objects are detectable by EGRET

visible outer-gap pulsars

the total number of visible objects shown here must be scaled down by 0.6 to match the number of radio detections: \sim 6 objects are detectable by EGRET

visible γ -ray flux distributions

29.3 visible slot-gap pulsars 6.2 visible outer-gap pulsars

the flux histograms have been scaled to match the number of radio detections. The slot-gap distribution reasonably matches the fluxes spanned by both the unidentified and the known pulsed EGRET sources

latitude distributions

29.3 visible slot-gap pulsars 6.2 visible outer-gap pulsars

the latitude histograms have been scaled to match the number of radio detections. The slot-gap pulsars may significantly contribute to the unidentified EGRET sources up to 40° in latitude as well as close to the Galactic plane

- Slot-gap pulsars can match the space and flux distributions of the known γ-ray pulsars and of a large fraction of the unidentified EGRET sources.
 - ~ 30 are visible (for an L_{γ}/\dot{E} efficiency of 10 %)
 - over a large range of \dot{E} : $5 \ 10^{25} < \dot{E} < 2 \ 10^{30} \text{ W}$
 - and ages: 0.02 < τ < 3 Myr</p>
- In the present simple scenario, outer-gap pulsars appear to be fainter, therefore less are visible
 - even though they match the observed flux range
 - < 10 are visible</p>
 - over a limited range of \dot{E} : 2 10²⁶ < \dot{E} < 9 10²⁷ W
 - and ages: 0.02 < τ < 2 Myr</p>

- In the stimates are extremely sensitive to the evolution of the beam geometry with age and to the radiative pattern inside the beam.
 - prescriptions are needed to check the behaviour of the outer-gap pulsars (the reduced beaming fraction for older thicker gaps may help to keep visible fluxes)
- the predicted γ-ray flux distributions peak well below the EGRET and GLAST sensitivities.
- the predicted flux distributions being very steep, a careful modelling of the non-uniform sensitivity of the γ-ray surveys is required to compare to the observations.

- ✤ Dyks & Rudak 2003,ApJ 598, 1201
- Gonthier, van Guilder, & Harding 2004, ApJ 604, 775
- Grenier, Casandjian, & Terrier 2005, Science 307, 1292
- Hobbs, Lorimer, Lyne, & Kramer 2005, MNRAS 360, 974
- Muslimov & Harding 2003, ApJ 588, 430
- Zhang, Cheng, Jiang, & Leung 2004, ApJ 604, 317
- Zhang, Zhang, & Cheng 2000, A&A 357, 957

